ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I FALL 2007

Final
January 18, 2008
15:00-16:50

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	20	120

1. Give the least complete solution to the congruence $25 x \equiv 100(\bmod 35)$.
2. Find all solutions $x, 0<x<500$, to

$$
\begin{aligned}
x & \equiv 1(\bmod 2) \\
x & \equiv 2(\bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 4(\bmod 7)
\end{aligned}
$$

3.

a) Give a careful statement of Euler's Theorem.
b) Is $4(39!)+7$! divisible by 41 ?
4.
(a) Add two negative integeres to the set $\{0,3,6,9,12,15\}$ so that the six integers you have will form a complete residue system modulo 8 . Justify your answer.
b) Does 41 divide $7 \cdot 3^{20}+6$?
5. Break the modulus into prime powers to find the least complete solution.

$$
x^{2}+x+1 \equiv 0(\bmod 91) .
$$

6. Find all solutions to the following system of congruences.

$$
\begin{aligned}
& x \equiv 34(\bmod 108) \\
& x \equiv 79(\bmod 300)
\end{aligned}
$$

