ÇANKAYA UNIVERSITYDepartment of Mathematics and Computer Science

MATH 365 Elementary Number Theory I **FALL 2007**

Final January 18, 2008 15:00-16:50

Surname	:	
_		
Signature	:	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do <u>not</u> write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	20	120

1. Give the least complete solution to the congruence $25x \equiv 100 \pmod{35}$.

2. Find all solutions x, 0 < x < 500, to

$$x \equiv 1 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{7}$$

- 3.
- a) Give a careful statement of Euler's Theorem.
 b) Is 4 (39!) + 7! divisible by 41?

4.

- (a) Add two negative integers to the set $\{0, 3, 6, 9, 12, 15\}$ so that the six integers you have will form a complete residue system modulo 8. Justify your answer. b) Does 41 divide $7 \cdot 3^{20} + 6$?

5. Break the modulus into prime powers to find the least complete solu
--

$$x^2 + x + 1 \equiv 0 \pmod{91}.$$

6. Find all solutions to the following system of congruences.

$$x \equiv 34 \pmod{108}$$

$$x \equiv 79 \pmod{300}$$