ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 365
Elementary Number Theory I
Second Midterm Practice Exam E
December 17, 2007
16:40-18:00

In the first four problems, find the order of each element in the given reduced residue system $S(\bmod b)$.

1. $b=5, S=\{1,2,3,4\}$
2. $b=10, S=\{1,3,7,9\}$
3. $b=11, S=\{1,2, \cdots, 10\}$
4. $b=13, S=\{1,2, \cdots, 12\}$

In the next six problems, find the order of $a(\bmod b)$. Compute $\phi(b)$.
5. $a=3, b=16$
6. $a=5, b=17$
7. $a=25, b=18$
8. $a=18, b=25$
9. $a=10, b=19$
10. $a=4, b=21$

In the next eight problems, compute the least residue of $a^{k}(\bmod b)$.
11. $a=2, k=35, b=11$
12. $a=3, k=45, b=13$
13. $a=50, k=40, b=19$
14. $a=60, k=75, b=19$
15. $a=8, k=50, b=21$
16. $a=9, k=43, b=25$
17. $a=51, k=100, b=17$
18. $a=105, k=77, b=53$
19. Find the last two digits of 7^{125}.
20. Find the last two digits of 9^{203}.

In the next four problems, find the least residue of $(b-1)$!
21. $b=9$
22. $b=10$
23. $b=101$
24. $b=21$
25. Prove or disprove: If $b>1$ is composite, then $(b-1)!\equiv 0(\bmod b)$
26. Show how the matching in the proof of Wilson's Theorem goes for $p=13$.
27. Repeat the previous problem for $p=17$.
28. Find the least residue of $100!+102!(\bmod 101)$
29. Find the least residue of $95!(\bmod 97)$
30. Show that if $b>1$ is not prime, then $(b-1)!\neq-1(\bmod b)$.
31. Let $a, b>0$, and $c>0$ be integers such that $(a, c)=1$ and $b \mid c$. Show that the order of $a(\bmod b)$ divides the order of $a(\bmod c)$.
32. Show that no integer has order $40(\bmod 100)$.
33. Show that no integer has order $24(\bmod 72)$.

