ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I
 SOLUTIONS

$2^{\text {nd }}$ Midterm
December 17, 2007
16:40-18:00
Surname :
Name : \qquad
ID \# : \qquad
Department : \qquad
Section : \qquad
Instructor : \qquad
Signature : \qquad

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
			CANCELLED			
20	20	20	20	20	10	110

1.

a) Does the congruence $28 x \equiv 6(\bmod 70)$ have a solution?
b) Write a complete residue system modulo 11 consisting entirely of even integers.

Solution:

a) $28 x \equiv 6(\bmod 70)$ has no solution since $(28,70) \nmid 6$.
b) A complete residue system modulo 11 consisting entirely of even integers is

$$
\{0,12,2,14,4,16,6,18,8,20,10\} .
$$

2. Find all solutions $z, 0<z<500$, to

$$
\begin{aligned}
& z \equiv 1(\bmod 2) \\
& z \equiv 2(\bmod 3) \\
& z \equiv 3(\bmod 5) \\
& z \equiv 4(\bmod 7)
\end{aligned}
$$

Solution:

$b_{1}=2, b_{2}=3, b_{3}=5, b_{4}=7$
$c_{1}=1, c_{2}=2, c_{3}=3, c_{4}=4$
$B=b_{1} b_{2} b_{3} b_{4}=(2)(3)(5)(7)=210$
$B_{1}=\frac{B}{b_{1}}=\frac{210}{2}=105, B_{2}=\frac{B}{b_{2}}=\frac{210}{3}=70, B_{3}=\frac{B}{b_{3}}=\frac{210}{5}=42, B_{4}=\frac{B}{b_{4}}=30$
$105 x_{1} \equiv 1(\bmod 2) \Longrightarrow x_{1}=1$
$70 x_{2} \equiv 1(\bmod 3) \Longrightarrow x_{2}=1$
$42 x_{3} \equiv 1(\bmod 5) \Longrightarrow x_{3}=3$
$30 x_{4} \equiv 1(\bmod 7) \Longrightarrow x_{4}=4$
$z=B_{1} x_{1} c_{1}+B_{2} x_{2} c_{2}+B_{3} x_{3} c_{3}+B_{4} x_{4} c_{4}$
$z=(105)(1)(1)+(70)(1)(1)+(42)(3)(3)+(30)(4)(4)$
$z=105+140+378+480$
$z=1103$
$\Longrightarrow z$ is of the form; $z=1103+210 t, 0<1103+210 t<500$
$\frac{-1103}{210}<t<-\frac{603}{210} \Longrightarrow t=-5,-4,-3$
$t=-5 \Longrightarrow z=1103-(210)(5)=53$
$t=-4 \Longrightarrow z=1103-(210)(4)=263$
$t=-3 \Longrightarrow z=1103-(210)(3)=473$
$\Longrightarrow z \in\{53,263,473\}$
3.
a) Give a careful statement of Fermat's (Little) Theorem.
b) Find the least residue of $3^{32}+8(\bmod 227)$

Solution:

a) Theorem (Fermat): If p is prime and a is an integer such that $p \nmid a$, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

for all integers a.
b) $3^{5} \equiv 243 \equiv 16(\bmod 227) \Longrightarrow 3^{10} \equiv 16^{2} \equiv 29(\bmod 227) \Longrightarrow 3^{20} \equiv 29^{2} \equiv 160(\bmod 227)$. $3^{30}=3^{10} \times 3^{20} \equiv 29 \times 160 \equiv 100(\bmod 227) \Longrightarrow 3^{32}=3^{30} \times 3^{2} \equiv 100 \times 9 \equiv 219(\bmod 227)$ $\Longrightarrow 3^{32}+8 \equiv 219+8 \equiv 0(\bmod 227)$.
4.
a) Find $1!+2!+\cdots+500!(\bmod 189)$.
b) Give the least complete solution to the congruence $27 x \equiv-18(\bmod 15)$

Solution:

a) Since $189=3^{3} \times 7$ divides 9 !, we have $n!\equiv 0(\bmod 189)$ for every $n \geq 9$. Hence

$$
\begin{aligned}
1!+2!+\cdots+500! & \equiv 1!+2!+\cdots+8!(\bmod 189) \\
& \equiv 117(\bmod 189) .
\end{aligned}
$$

b) $\operatorname{gcd}(27,15)=3$
$x_{0}=1$ is one of the solutions
$x=x_{0}+\frac{b}{d} t \Longrightarrow x=1+\frac{15}{3} t=1+5 t$ where $t=0,1,2$
$t=0 \Longrightarrow x=1$
$t=1 \Longrightarrow x=1+5=6$
$t=2 \Longrightarrow x=1+10=11$
$\Longrightarrow x=1,6,11$
5. Show that no integer has order 40 modulo 100.

THIS PROBLEM IS CANCELLED
THIS PROBLEM IS CANCELLED

THIS PROBLEM IS CANCELLED

6. (Bonus) Find all solutions to the following system of congruences.

$$
\begin{aligned}
5 x & \equiv 2(\bmod 9) \\
2 x & \equiv 5(\bmod 13) \\
3 x & \equiv 7(\bmod 17)
\end{aligned}
$$

Solution: Multiply by suitable numbers on both side of the equivalence to reduce the coefficients of x to 1 .

$$
\begin{array}{rr}
2 \times 5 x \equiv 2 \times 2(\bmod 9) \\
7 \times 2 x \equiv 7 \times 5(\bmod 13) & \longrightarrow \\
6 \times 3 x \equiv 6 \times 7(\bmod 17) & x \equiv 4(\bmod 9) \\
\hline \equiv 8(\bmod 13) \\
\hline
\end{array}
$$

Now we need to solve
$13 \times 17 b_{1} \equiv 1(\bmod 9), 9 \times 17 b_{2} \equiv 1(\bmod 13), 9 \times 13 b_{3} \equiv 1(\bmod 17)$.
Reducing modulo the respective modulus, we get
$5 b_{1} \equiv 1(\bmod 9),-3 b_{2} \equiv 1(\bmod 13), \quad-2 b_{3} \equiv 1(\bmod 17)$.
Multiply by suitable numbers on both sides of the equivalence to reduce the coefficients of b_{i} to 1 .
$b_{1} \equiv 2(\bmod 9), b_{2} \equiv 4(\bmod 13), \quad b_{3} \equiv 8(\bmod 17)$.
So

$$
\begin{aligned}
x & \equiv 13 \times 17 \times 2 \times 4+9 \times 17 \times 4 \times(-4)+9 \times 13 \times 8 \times 8(\bmod 9 \times 13 \times 17) \\
& \equiv 6808(\bmod 252) \\
& \equiv 841(\bmod 252) .
\end{aligned}
$$

Check that $5 \times 841 \equiv 2(\bmod 9), 2 \times 841 \equiv 5(\bmod 13), 3 \times 841 \equiv 7(\bmod 17)$

