ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 365
Elementary Number Theory I
First Midterm Practice Exam (B)
November 12, 2007
16:40-18:00

Find the q and r guaranteed by the division algorithm for each pair a, b in problems 1 through 12 .

1. $a=13, b=380$
2. $a=15, b=421$
3. $a=720, b=155$
4. $a=339, b=17$
5. $a=17, b=51$
6. $a=21, b=105$
7. $a=19, b=0$
8. $a=35, b=0$
9. $a=7, b=0$
10. $a=9, b=-29$
11. $a=43, b=-500$
12. $a=47, b=-500$
13. What are all the common divisors of 12 , and 18 .
14. What are all the common divisors of 45 , and 75 .
15. What are all the common multiples of 4 , and 6 .
16. What are all the common multiples of 27 , and 18 .

True - False. In the next eight problems, tell which statements are true and give counterexamples for those that are false. Assume a, b, c, and d are arbitrary integers with $. a>0$ and c and d nonzero.
17. There exist integers q and $r, 0 \leq r<c$, such that $b=c q+r$.
18. There exist integers q and $r, 0 \leq r<|c|$, such that $b=c q+r$.
19. There exist integers q and $r, r \leq a / 2$, such that $b=a q+r$.
20. There exist integers q and $r, r<a / 2$, such that $b=a q+r$.
21. The set of common divisors of b and c is the set of divisors of (b, c).
22. The set of common multiples of c and $b>(c, d)$, then b is not a divisor of d.
23. If b is a multiple of c, and $b<[c, d]$, then b is not a multiple of d.
24. Prove that $(a, a+2)$ is 2 if a is even and 1 if a is odd.
25. Prove that if $a>0$, then $[a, a+2]=a(a+2) / 2$ if a is even and $a(a+2)$ if a is odd.

