ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 365
Elementary Number Theory I
First Midterm Practice Exam (D)
November 12, 2007
16:40-18:00

In problems 1 through 6, tell whether or not the equation has a solution.

1. $3 x+5 y=50,001$
2. $6 x+9 y=60,001$
3. $21 x-14 y=10,000$
4. $-12 x+42 y=366$
5. $529 x+2024 y=391$
6. $851 x+1147 y=481$

Use the Euclidean Algorithm method to find one solution to the equations in problems 7 through 12.
7. $7 x+20 y=3$
8. $8 x+21 y=5$
9. $66 x+51 y=300$
10. $65 x+50 y=300$
11. $200 x-300 y=400$
12. $55 x+200 y=-100$

In problems 13 through 19, find all solutions with x and y positive.
13. $5 x+6 y=100$
14. $6 x+7 y=200$
15. $6 x+8 y=120$
16. $9 x+6 y=150$
17. $121 x+561 y=13,200$
18. $169 x+663 y=2340$
19. $621 x+1026 y=49,194$
20. If $a b c \neq 0$, is it possible for $a x+b y=c$ to have infinitely many solutions in positive integers?
21. For what triples a, b, c is it true that for each integer x there is an integer y such that $a x+b y=c$?

