ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 365
Elementary Number Theory I
First Midterm Practice Exam (E)
November 12, 2007
16:40-18:00

In the first eight problems, tell whether each statement is true or false.

1. $5 \equiv 27(\bmod 11)$
2. $63 \equiv 15(\bmod 9)$
3. $101 \equiv 29(\bmod 16)$
4. $-5 \equiv 43(\bmod 12)$
5. $7 \equiv-34(\bmod 9)$
6. $-50 \equiv 2(\bmod 13)$
7. $17 \equiv 62(\bmod 90)$
8. $-73 \equiv-29(\bmod 128)$

In the next 18 problems, find the least residue of b modulo m.
9. $m=7, b=100$
10. $m=8, b=77$
11. $m=50, b=17$
12. $m=51, b=19$
13. $m=50, b=-12$
14. $m=51, b=-30$

In problems 13 through 19, find all solutions with x and y positive.
15. $5 x+6 y=100$
16. $6 x+7 y=200$
17. $6 x+8 y=120$
18. $9 x+6 y=150$
19. $121 x+561 y=13,200$
20. $169 x+663 y=2340$
21. $621 x+1026 y=49,194$
22. If $a b c \neq 0$, is it possible for $a x+b y=c$ to have infinitely many solutions in positive integers?
23. For what triples a, b, c is it true that for each integer x there is an integer y such that $a x+b y=c$?

