ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I

Final Exam
Jan 18, 2008
15:40-16:50
In the first 10 problems, find the least complete solution by testing.

1. $x^{3}-x^{2}+3 x+1 \equiv 0(\bmod 7)$
2. $x^{3}-x^{2}+3 x+1 \equiv 0(\bmod 5)$
3. $x^{2}-3 x+1001 \equiv 0(\bmod 3)$
4. $x^{2}-3 x+1001 \equiv 0(\bmod 5)$
5. $x^{2}-3 x+1001 \equiv 0(\bmod 7)$
6. $x^{4}-x^{3}+5 x+1 \equiv 0(\bmod 3)$
7. $x^{4}-x^{3}+5 x+1 \equiv 0(\bmod 11)$
8. $x^{4}-x^{3}+5 x+1 \equiv 0(\bmod 4)$
9. $x^{7}-x \equiv 0(\bmod 7)$
10. $x^{7}-x \equiv 0(\bmod 5)$

In the next four problems, find all solutions x with $|x|<10$.
11. $x^{3}+x+3 \equiv 0(\bmod 7)$
12. $x^{3}+x+3 \equiv 0(\bmod 13)$
13. $x^{3}+x+3 \equiv 0(\bmod 19)$
14. $x^{3}+x+3 \equiv 0(\bmod 3)$

In the next 10 problems, break the modulus into prime powers to find the least complete solution.
15. $x^{3}-x^{2}+3 x+1 \equiv 0(\bmod 35)$
16. $x^{2}-3 x+1001 \equiv 0(\bmod 15)$
17. $x^{2}-3 x+1001 \equiv 0(\bmod 10)$
18. $x^{2}-3 x+1001 \equiv 0(\bmod 21)$
19. $x^{4}-x^{3}+5 x+1 \equiv 0(\bmod 33)$
20. $x^{4}-x^{3}+5 x+1 \equiv 0(\bmod 66)$
21. $x^{2}+x+1 \equiv 0(\bmod 21)$
22. $x^{2}+x+1 \equiv 0(\bmod 91)$
23. $x^{2}+x+1 \equiv 0(\bmod 273)$
24. $x^{2}+x+1 \equiv 0(\bmod 195)$

In the next four problems, a congruence is given with modulus p^{2}, p a prime. A solution x^{\prime} to the corresponding congruence with modulus p is also given. Substitute $x=x^{\prime}+p y$ into the congruence and find a linear congruence with modulus p that y must satisfy as in the example we did in class. Find any corresponding solutions $x, 0 \leq x<p^{2}$.
25. $x^{3}+8 \equiv 0(\bmod 9), x^{\prime}=1$
26. $x^{2}+x+1 \equiv 0(\bmod 49), x^{\prime}=4$
27. $x^{3}+8 \equiv 0(\bmod 25), x^{\prime}=3$
28. $x^{2}+x+1 \equiv 0(\bmod 49), x^{\prime}=2$

In the next four problems, use the method at the end of this section to find the least complete solution.
29. $x^{2}-x+2 \equiv 0(\bmod 25)$
30. $x^{2}-x+2 \equiv 0(\bmod 49)$
31. $x^{2}+x+2 \equiv 0(\bmod 121)$
32. $x^{3}+8 \equiv 0(\bmod 49)$

In the next four problems, let k and k^{\prime} be the number of elements in complete solutions to $F(x) \equiv 0(\bmod 3)$ and $F(x) \equiv 0(\bmod 9)$, respectively. Construct an integral polynomial F so that k and k^{\prime} are as given.
33. $k=3, k^{\prime}=0$
34. $k=1, k^{\prime}=3$
35. $k=1, k^{\prime}=1$
36. $k=2, k^{\prime}=4$
35. Use induction on n to prove that if $m=m_{1} m_{2} \cdots m_{n}$ and $m_{1}, m_{2}, \cdots, m_{n}$ are positive integers, relatively prime in pairs, then $z \equiv z^{\prime}(\bmod m)$ if and only if $z \equiv z^{\prime}\left(\bmod m_{i}\right)$ for $i=1,2, \cdots, n$.

