ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science

MATH 365 Elementary Number Theory I Final Exam Jan 18, 2008 15:40 – 16:50

In the first 10 problems, find the least complete solution by testing.

- **1.** $x^3 x^2 + 3x + 1 \equiv 0 \pmod{7}$
- **2.** $x^3 x^2 + 3x + 1 \equiv 0 \pmod{5}$
- **3.** $x^2 3x + 1001 \equiv 0 \pmod{3}$
- 4. $x^2 3x + 1001 \equiv 0 \pmod{5}$
- **5.** $x^2 3x + 1001 \equiv 0 \pmod{7}$
- **6.** $x^4 x^3 + 5x + 1 \equiv 0 \pmod{3}$
- 7. $x^4 x^3 + 5x + 1 \equiv 0 \pmod{11}$
- 8. $x^4 x^3 + 5x + 1 \equiv 0 \pmod{4}$

9. $x^7 - x \equiv 0 \pmod{7}$

10. $x^7 - x \equiv 0 \pmod{5}$

In the next four problems, find all solutions x with |x| < 10. 11. $x^3 + x + 3 \equiv 0 \pmod{7}$

12. $x^3 + x + 3 \equiv 0 \pmod{13}$

13. $x^3 + x + 3 \equiv 0 \pmod{19}$

14. $x^3 + x + 3 \equiv 0 \pmod{3}$

In the next 10 problems, break the modulus into prime powers to find the least complete solution.

15. $x^3 - x^2 + 3x + 1 \equiv 0 \pmod{35}$ **16.** $x^2 - 3x + 1001 \equiv 0 \pmod{15}$

17. $x^2 - 3x + 1001 \equiv 0 \pmod{10}$

18. $x^2 - 3x + 1001 \equiv 0 \pmod{21}$

19. $x^4 - x^3 + 5x + 1 \equiv 0 \pmod{33}$ **20.** $x^4 - x^3 + 5x + 1 \equiv 0 \pmod{66}$ **21.** $x^2 + x + 1 \equiv 0 \pmod{21}$ **22.** $x^2 + x + 1 \equiv 0 \pmod{91}$ **23.** $x^2 + x + 1 \equiv 0 \pmod{91}$ **24.** $x^2 + x + 1 \equiv 0 \pmod{195}$

In the next four problems, a congruence is given with modulus p^2 , p a prime. A solution x' to the corresponding congruence with modulus p is also given. Substitute x = x' + py into the congruence and find a linear congruence with modulus p that y must satisfy as in the example we did in class. Find any corresponding solutions $x, 0 \le x < p^2$. **25.** $x^3 + 8 \equiv 0 \pmod{9}, x' = 1$

26. $x^2 + x + 1 \equiv 0 \pmod{49}, x' = 4$

27. $x^3 + 8 \equiv 0 \pmod{25}, x' = 3$

28. $x^2 + x + 1 \equiv 0 \pmod{49}, x' = 2$

In the next four problems, use the method at the end of this section to find the least complete solution.

29. $x^2 - x + 2 \equiv 0 \pmod{25}$ **30.** $x^2 - x + 2 \equiv 0 \pmod{49}$ **31.** $x^2 + x + 2 \equiv 0 \pmod{421}$ **32.** $x^3 + 8 \equiv 0 \pmod{49}$

In the next four problems, let k and k' be the number of elements in complete solutions to $F(x) \equiv 0 \pmod{3}$ and $F(x) \equiv 0 \pmod{9}$, respectively. Construct an integral polynomial F so that k and k' are as given.

33. k = 3, k' = 0 **34.** k = 1, k' = 3 **35.** k = 1, k' = 1 **36.** k = 2, k' = 4**35.** Use induction

35. Use induction on n to prove that if $m = m_1 m_2 \cdots m_n$ and m_1, m_2, \cdots, m_n are positive integers, relatively prime in pairs, then $z \equiv z' \pmod{m}$ if and only if $z \equiv z' \pmod{m_i}$ for $i = 1, 2, \cdots, n$.