ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science

MATH 365 Elementary Number Theory I

 2^{nd} Midterm December 17, 2007 16:40-18:00

Surname	:	
ID #	:	
-		
Signature	•	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do <u>not</u> write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	10	110

1.

a) Does the congruence $28x \equiv 6 \pmod{70}$ have a solution? b) Write a complete residue system modulo 11 consisting entirely of even integers.

2. Find all solutions z, 0 < z < 500, to

$$z \equiv 1 \pmod{2}$$
$$z \equiv 2 \pmod{3}$$
$$z \equiv 3 \pmod{5}$$
$$z \equiv 4 \pmod{7}$$

3. a) Give a careful statement of Fermat's (Little) Theorem. b) Find the least residue of $3^{32} + 8 \pmod{227}$ 4. a) Find $1! + 2! + \cdots + 500! \pmod{189}$. b) Give the least complete solution to the congruence $27x \equiv -18 \pmod{15}$ 5. Show that no integer has order 40 modulo 100.

6. (Bonus) Find all solutions to the following system of congruences.

$$5x \equiv 2 \pmod{9}$$

$$2x \equiv 5 \pmod{13}$$

$$3x \equiv 7 \pmod{17}$$