ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I

$2^{\text {nd }}$ Midterm

December 17, 2007
16:40-18:00
\qquad

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	10	110

1.

a) Does the congruence $28 x \equiv 6(\bmod 70)$ have a solution?
b) Write a complete residue system modulo 11 consisting entirely of even integers.
2. Find all solutions $z, 0<z<500$, to

$$
\begin{aligned}
& z \equiv 1(\bmod 2) \\
& z \equiv 2(\bmod 3) \\
& z \equiv 3(\bmod 5) \\
& z \equiv 4(\bmod 7)
\end{aligned}
$$

3.

a) Give a careful statement of Fermat's (Little) Theorem.
b) Find the least residue of $3^{32}+8(\bmod 227)$
4.
a) Find $1!+2!+\cdots+500!(\bmod 189)$.
b) Give the least complete solution to the congruence $27 x \equiv-18(\bmod 15)$
5. Show that no integer has order 40 modulo 100 .
6. (Bonus) Find all solutions to the following system of congruences.

$$
\begin{aligned}
5 x & \equiv 2(\bmod 9) \\
2 x & \equiv 5(\bmod 13) \\
3 x & \equiv 7(\bmod 17)
\end{aligned}
$$

