ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I
 FALL 2007

Final
January 18, 2008
15:00-16:50

- The exam consists of 6 questions
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!
Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	20	120

1. Find all integer solutions to the congruence $42 x \equiv 90(\bmod 156)$.
2. Find the 2 smallest positive integers x such that

$$
\begin{aligned}
x & \equiv 2(\bmod 7) \\
x & \equiv 3(\bmod 11) \\
x & \equiv 4(\bmod 13)
\end{aligned}
$$

3.

a) Give a careful statement of Wilson's Theorem.
b) Is $4(29!)+5$! divisible by 31 ?
4.
(a) Add two negative integeres to the set $\{6,11,14,28\}$ so that the six integers you have will form a complete residue system modulo 6. Justify your answer.
b) Does 41 divide $7 \cdot 3^{20}+6$?
5. Break the modulus into prime powers to find the least complete solution.

$$
4 x^{2}-12 x+5 \equiv 0(\bmod 77) .
$$

6. (Bonus) Find all solutions to the following system of congruences.

$$
\begin{aligned}
& x \equiv 34(\bmod 105) \\
& x \equiv 79(\bmod 330)
\end{aligned}
$$

