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1. Find all integer solutions to the congruence 42x ≡ 90 (mod 156).

Solutions:

By applying the Euclidean algorithm, we have

156 = 3 · 42 + 30

42 = 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6

So gcd (42, 156) = 6, and we are expecting 6 incongruent solutions this congruence.
Now

6 = 30− 2 · 12

= 30− 2 (42− 30)

= 3 · 30− 2 · 42

= 3 (156− 3 · 42)− 2 · 42

= (3) (156)− (11) (42) .

Multiplying both sides by 15, we get 90 = (45) (156)− (165) (42). So 90 ≡ −165 · 42 (mod 156),
which means −165 ≡ −9 (mod 156) is a solution. Therefore, the six solutions are given by

x = −9 +
156

6
t, where t = 0, 1, · · · , 5, i.e., x ≡ −9, 17, 43, 69, 95, 121 (mod 156).



2. Find the 2 smallest positive integers x such that

x ≡ 2 (mod 7)

x ≡ 3 (mod 11)

x ≡ 4 (mod 13) .

Solution:

Obviously 7, 11, 13 are pairwise relatively prime, so by the Chinese Remainder Theorem (CRT)
this system has a unique solution mod7× 11× 13 = 1001.

(11× 13) b1 ≡ 1 (mod 7)⇐⇒ 3b1 ≡ 1 (mod 7)⇐⇒ b1 ≡ 5 (mod 7)

(7× 13) b2 ≡ 1 (mod 11)⇐⇒ 3b2 ≡ 1 (mod 11)⇐⇒ b2 ≡ 4 (mod 11)

(7× 11) b3 ≡ 1 (mod 13)⇐⇒ −b3 ≡ 1 (mod 13)⇐⇒ b3 ≡ −1 (mod 13)

and x ≡ (143) (5) (2) + (91) (4) (3) + (77) (−1) (4) ≡ 212 (mod 1001).

Thus the two solutions are 212 and 1213.



3.
a) Give a careful statement of Wilson’s Theorem.
b) Is 4 (29!) + 5! divisible by 31?

Solution:

(a) Wilson’s theorem: If p is prime, then

(p− 1)! ≡ −1 (mod p) .

(b) Since 31 is prime, it follows from Wilson’s theorem that

−1 ≡ 30! ≡ (29!) 30 ≡ (29!) (−1) (mod 31) .

Upon multiplying both sides by −1, we see that 29! ≡ 1 (mod 31) and so

4 (29!) + 5! ≡ 4 (1) + 120 ≡ 124 ≡ 4 · 31 ≡ 0 (mod 31) .



4.
(a) Add two negative integeres to the set {6, 11, 14, 28} so that the six integers you have will
form a complete residue system modulo 6. Justify your answer.
b) Does 41 divide 7 · 320 + 6?

Solution:

(a) A complete residue system modulo 6 is a set of six integers in which no two are congruent
to each other. Note that

6 ≡ 0 (mod 6)

11 ≡ 5 (mod 6)

14 ≡ 2 (mod 6)

28 ≡ 4 (mod 6) .

So we need to find two negative integers which are congruent to 1 and 3 modulo 6. Since
−5 ≡ 1 (mod 6) and −3 ≡ 3 (mod 6), the numbers 6, 11, 14, 28,−5,−3 form a complete residue
system modulo 6.

(b) We want to find out whether 7 · 320 + 6 ≡ 0 (mod 41) .
Note that 34 = 81 ≡ −1 (mod 41). So 320 ≡ (−1)5 ≡ −1 (mod 41). Thus 7·320+6 ≡ 7 (−1)+6 ≡
−1 (mod 41). Since −1 
≡ 0 (mod 41), 41 does not divide 7 · 320 + 6.



5. Break the modulus into prime powers to find the least complete solution.

4x2 − 12x+ 5 ≡ 0 (mod 77) .

Solution: The prime power factors of 77 are 7 and 11. By testing values in complete residue
systems we find that a complete solution to

4x2 + 2x+ 5 ≡ 0 (mod 7)

is x = −3,−1; and a complete solution to

4x2 − x+ 5 ≡ 0 (mod 11)

is x = −3, 6.

Now we use the Chinese Remainder Theorem (CRT) to solve the simultaneous congruences

x ≡ −3 or − 1 (mod 7)

x ≡ −3 or 6 (mod 11) ,

which involves solving

11x1 ≡ 1 (mod 7)

7x2 ≡ 1 (mod 11)

Solutions are x1 = 2 and x2 = −3 (mod 11). Then by the CRT, the simultaneous solutions are

x = (11) (2) (−3 or − 1) + (7) (−3) (−3 or 6)

= −192,−148,−3, 41

This is a complete solution to the original congrunce. The least complete solution is x =
6, 38, 41, 74.



6. (Bonus) Find all solutions to the following system of congruences.

x ≡ 34 (mod 105)

x ≡ 79 (mod 330)

Solution: Since 105 = 3× 5× 7 and 330 = 2× 3× 5× 11, this system is equivalent to

x ≡ 34 (mod 3)

x ≡ 34 (mod 5)

x ≡ 34 (mod 7)

x ≡ 79 (mod 2)

x ≡ 79 (mod 3)

x ≡ 79 (mod 5)

x ≡ 79 (mod 11) .

Reducing modulo the respective modulus, we get

x ≡ 1 (mod 3)

x ≡ 4 (mod 5)

x ≡ 6 (mod 7)

x ≡ 1 (mod 2)

x ≡ 1 (mod 3)

x ≡ 1 (mod 5)

x ≡ 2 (mod 11) .

So we are left with

x ≡ 1 (mod 2)

x ≡ 1 (mod 3)

x ≡ −1 (mod 5)

x ≡ −1 (mod 7)

x ≡ 2 (mod 11) .

Now we need to solve

3× 5× 7× 11b1 ≡ 1 (mod 2) , 2× 5× 7× 11b2 ≡ 1 (mod 3) , 2× 3× 7× 11b3 ≡ 1 (mod 5)

2× 3× 5× 11b4 ≡ 1 (mod 7) , 2× 3× 5× 7b5 ≡ 1 (mod 11) .

Reducing modulo the respective modulus, we get

b1 ≡ 1 (mod 2) ,−b2 ≡ 1 (mod 3) , 2b3 ≡ 1 (mod 5)

b4 ≡ 1 (mod 7) , b5 ≡ 1 (mod 11) .

Multiply suitable numbers on both side of the equivalence to reduce the coefficients of bi to 1.

b1 ≡ 1 (mod 2) , b2 ≡ −1 (mod 3) , b3 ≡ 3 (mod 5)

b4 ≡ 1 (mod 7) , b5 ≡ 1 (mod 11) ,

So

x ≡ 3× 5× 7× 11× 1× 1×+2× 5× 7× (−1)× 1 + 2× 3× 7× 11× 3× (−1)

+2× 3× 5× 11× 1× (−1) + 2× 3× 5× 7× 1× 2 (mod 2× 3× 5× 7× 11)

≡ −911 (mod 2310) .

Check that −911 ≡ 349 (mod 105) and −911 ≡ 79 (mod 330).


