ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 365
 Elementary Number Theory I
 FALL 2007

Final SOLUTIONS
January 18, 2008
15:00-16:50

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!
Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	20	20	20	20	10	110

1. Find all integer solutions to the congruence $42 x \equiv 90(\bmod 156)$.

Solutions:

By applying the Euclidean algorithm, we have

$$
\begin{aligned}
156 & =3 \cdot 42+30 \\
42 & =30+12 \\
30 & =2 \cdot 12+6 \\
12 & =2 \cdot 6
\end{aligned}
$$

So $\operatorname{gcd}(42,156)=6$, and we are expecting 6 incongruent solutions this congruence. Now

$$
\begin{aligned}
6 & =30-2 \cdot 12 \\
& =30-2(42-30) \\
& =3 \cdot 30-2 \cdot 42 \\
& =3(156-3 \cdot 42)-2 \cdot 42 \\
& =(3)(156)-(11)(42) .
\end{aligned}
$$

Multiplying both sides by 15 , we get $90=(45)(156)-(165)(42)$. So $90 \equiv-165 \cdot 42(\bmod 156)$, which means $-165 \equiv-9(\bmod 156)$ is a solution. Therefore, the six solutions are given by $x=-9+\frac{156}{6} t$, where $t=0,1, \cdots, 5$, i.e., $x \equiv-9,17,43,69,95,121(\bmod 156)$.
2. Find the 2 smallest positive integers x such that

$$
\begin{aligned}
& x \equiv 2(\bmod 7) \\
& x \equiv 3(\bmod 11) \\
& x \equiv 4(\bmod 13)
\end{aligned}
$$

Solution:

Obviously $7,11,13$ are pairwise relatively prime, so by the Chinese Remainder Theorem (CRT) this system has a unique solution $\bmod 7 \times 11 \times 13=1001$.

$$
\begin{aligned}
(11 \times 13) b_{1} & \equiv 1(\bmod 7) \Longleftrightarrow 3 b_{1} \equiv 1(\bmod 7) \Longleftrightarrow b_{1} \equiv 5(\bmod 7) \\
(7 \times 13) b_{2} & \equiv 1(\bmod 11) \Longleftrightarrow 3 b_{2} \equiv 1(\bmod 11) \Longleftrightarrow b_{2} \equiv 4(\bmod 11) \\
(7 \times 11) b_{3} & \equiv 1(\bmod 13) \Longleftrightarrow-b_{3} \equiv 1(\bmod 13) \Longleftrightarrow b_{3} \equiv-1(\bmod 13)
\end{aligned}
$$

and $x \equiv(143)(5)(2)+(91)(4)(3)+(77)(-1)(4) \equiv 212(\bmod 1001)$.
Thus the two solutions are 212 and 1213.
3.
a) Give a careful statement of Wilson's Theorem.
b) Is $4(29!)+5$! divisible by 31 ?

Solution:

(a) Wilson's theorem: If p is prime, then

$$
(p-1)!\equiv-1(\bmod p) .
$$

(b) Since 31 is prime, it follows from Wilson's theorem that

$$
-1 \equiv 30!\equiv(29!) 30 \equiv(29!)(-1) \quad(\bmod 31) .
$$

Upon multiplying both sides by -1 , we see that $29!\equiv 1(\bmod 31)$ and so

$$
4(29!)+5!\equiv 4(1)+120 \equiv 124 \equiv 4 \cdot 31 \equiv 0(\bmod 31) .
$$

4.

(a) Add two negative integeres to the set $\{6,11,14,28\}$ so that the six integers you have will form a complete residue system modulo 6. Justify your answer.
b) Does 41 divide $7 \cdot 3^{20}+6$?

Solution:

(a) A complete residue system modulo 6 is a set of six integers in which no two are congruent to each other. Note that

$$
\begin{aligned}
6 & \equiv 0(\bmod 6) \\
11 & \equiv 5(\bmod 6) \\
14 & \equiv 2(\bmod 6) \\
28 & \equiv 4(\bmod 6) .
\end{aligned}
$$

So we need to find two negative integers which are congruent to 1 and 3 modulo 6 . Since $-5 \equiv 1(\bmod 6)$ and $-3 \equiv 3(\bmod 6)$, the numbers $6,11,14,28,-5,-3$ form a complete residue system modulo 6 .
(b) We want to find out whether $7 \cdot 3^{20}+6 \equiv 0(\bmod 41)$.

Note that $3^{4}=81 \equiv-1(\bmod 41)$. So $3^{20} \equiv(-1)^{5} \equiv-1(\bmod 41)$. Thus $7 \cdot 3^{20}+6 \equiv 7(-1)+6 \equiv$ $-1(\bmod 41)$. Since $-1 \not \equiv 0(\bmod 41), 41$ does not divide $7 \cdot 3^{20}+6$.
5. Break the modulus into prime powers to find the least complete solution.

$$
4 x^{2}-12 x+5 \equiv 0(\bmod 77)
$$

Solution: The prime power factors of 77 are 7 and 11. By testing values in complete residue systems we find that a complete solution to

$$
4 x^{2}+2 x+5 \equiv 0(\bmod 7)
$$

is $x=-3,-1$; and a complete solution to

$$
4 x^{2}-x+5 \equiv 0(\bmod 11)
$$

is $x=-3,6$.
Now we use the Chinese Remainder Theorem (CRT) to solve the simultaneous congruences

$$
\begin{aligned}
& x \equiv-3 \text { or }-1(\bmod 7) \\
& x \equiv-3 \text { or } 6(\bmod 11),
\end{aligned}
$$

which involves solving

$$
\begin{aligned}
11 x_{1} & \equiv 1(\bmod 7) \\
7 x_{2} & \equiv 1(\bmod 11)
\end{aligned}
$$

Solutions are $x_{1}=2$ and $x_{2}=-3(\bmod 11)$. Then by the CRT, the simultaneous solutions are

$$
\begin{aligned}
x & =(11)(2)(-3 \text { or }-1)+(7)(-3)(-3 \text { or } 6) \\
& =-192,-148,-3,41
\end{aligned}
$$

This is a complete solution to the original congrunce. The least complete solution is $x=$ $6,38,41,74$.
6. (Bonus) Find all solutions to the following system of congruences.

$$
\begin{aligned}
& x \equiv 34(\bmod 105) \\
& x \equiv 79(\bmod 330)
\end{aligned}
$$

Solution: Since $105=3 \times 5 \times 7$ and $330=2 \times 3 \times 5 \times 11$, this system is equivalent to

$$
\begin{aligned}
x & \equiv 34(\bmod 3) \\
x & \equiv 34(\bmod 5) \\
x & \equiv 34(\bmod 7) \\
x & \equiv 79(\bmod 2) \\
x & \equiv 79(\bmod 3) \\
x & \equiv 79(\bmod 5) \\
x & \equiv 79(\bmod 11) .
\end{aligned}
$$

Reducing modulo the respective modulus, we get

$$
\begin{aligned}
x & \equiv 1(\bmod 3) \\
x & \equiv 4(\bmod 5) \\
x & \equiv 6(\bmod 7) \\
x & \equiv 1(\bmod 2) \\
x & \equiv 1(\bmod 3) \\
x & \equiv 1(\bmod 5) \\
x & \equiv 2(\bmod 11) .
\end{aligned}
$$

So we are left with

$$
\begin{aligned}
x & \equiv 1(\bmod 2) \\
x & \equiv 1(\bmod 3) \\
x & \equiv-1(\bmod 5) \\
x & \equiv-1(\bmod 7) \\
x & \equiv 2(\bmod 11) .
\end{aligned}
$$

Now we need to solve

$$
\begin{aligned}
& 3 \times 5 \times 7 \times 11 b_{1} \equiv 1(\bmod 2), 2 \times 5 \times 7 \times 11 b_{2} \equiv 1(\bmod 3), 2 \times 3 \times 7 \times 11 b_{3} \equiv 1(\bmod 5) \\
& 2 \times 3 \times 5 \times 11 b_{4} \equiv 1(\bmod 7), 2 \times 3 \times 5 \times 7 b_{5} \equiv 1(\bmod 11) .
\end{aligned}
$$

Reducing modulo the respective modulus, we get

$$
\begin{aligned}
b_{1} & \equiv 1(\bmod 2),-b_{2} \equiv 1(\bmod 3), 2 b_{3} \equiv 1(\bmod 5) \\
b_{4} & \equiv 1(\bmod 7), b_{5} \equiv 1(\bmod 11) .
\end{aligned}
$$

Multiply suitable numbers on both side of the equivalence to reduce the coefficients of b_{i} to 1 .

$$
\begin{aligned}
b_{1} & \equiv 1(\bmod 2), b_{2} \equiv-1(\bmod 3), b_{3} \equiv 3(\bmod 5) \\
b_{4} & \equiv 1(\bmod 7), b_{5} \equiv 1(\bmod 11),
\end{aligned}
$$

So

$$
\begin{aligned}
x \equiv & 3 \times 5 \times 7 \times 11 \times 1 \times 1 \times+2 \times 5 \times 7 \times(-1) \times 1+2 \times 3 \times 7 \times 11 \times 3 \times(-1) \\
& +2 \times 3 \times 5 \times 11 \times 1 \times(-1)+2 \times 3 \times 5 \times 7 \times 1 \times 2(\bmod 2 \times 3 \times 5 \times 7 \times 11) \\
\equiv & -911(\bmod 2310) .
\end{aligned}
$$

Check that $-911 \equiv 349(\bmod 105)$ and $-911 \equiv 79(\bmod 330)$.

