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• The exam consists of 6 questions.
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1. Evaluate the following limits

a) lim
x→+∞

(ex + x)1/x , b) lim
x→0

ex − 1
sinx

, c) lim
x→3−

(
1

ln (x− 2)
−

1

x− 3

)

Solution:

a)

lim
x→+∞

(ex + x)1/x
[
∞0
]

Let y = (ex + x)1/x.

lim
x→∞

ln y = lim
x→∞

ln (ex + x)

x

[∞
∞

]

Therefore L’Hopital’s Rule applies, and so we have

= lim
x→∞

ex + 1

ex + x
1

= lim
x→∞

ex

ex + 1
= lim

x→∞

ex

ex
= lim

x→∞
1 = 1.

Thus,

= lim
x→∞

(ex + x)1/x = e.

b)

lim
x→0

ex − 1
sinx

[
0

0

]

Therefore L’Hopital’s Rule applies, and so we have

lim
x→0

ex − 1
sinx

= lim
x→0

ex

cosx
=

e0

cos 0
= 1

c)

lim
x→3−

(
1

ln (x− 2)
−

1

x− 3

)
[∞−∞]

lim
x→3−

(
1

ln (x− 2)
−

1

x− 3

)
= lim

x→3−

x− 3− ln (x− 2)
(x− 3) ln (x− 2)

[
0

0

]

Therefore L’Hopital’s Rule applies, and so we have

= lim
x→3−

1− 1

x−2

ln (x− 2) + x−3
x−2

= lim
x→3−

x−2−1
x−2

ln (x− 2) + x−3
x−2

= lim
x→3−

x− 3
(x− 2) ln (x− 2) + x− 3

= lim
x→3−

1

ln (x− 2) + (x− 2) 1

x−2 + 1
=
1

2



2. For each of the following functions, calculate the derivative. Do not simplify your answers.

a) y =

(
x

x+ 9

)3x+2
, b) y = ln

sin−1 x

sinx
, c) f (x) =

∫ x2

√
x

dt

1 + t+ sin t

Solution:

a)

y =

(
x

x+ 9

)3x+2
=⇒ ln y = (3x+ 2) [ln x− ln (x+ 9)]

=⇒
1

y
y′ = 3 [ln x− ln (x+ 9)] + (3x+ 2)

[
1

x
−

1

x+ 9

]

=⇒ y′ = 3y

[
ln x− ln (x+ 9) + (3x+ 2)

(
1

x
−

1

x+ 9

)]

=⇒ y′ = 3

(
x

x+ 9

)3x+2 [
ln x− ln (x+ 9) + (3x+ 2)

(
1

x
−

1

x+ 9

)]

b)

y = ln
sin−1 x

sin x
= ln sin−1 x− ln sin x

=⇒ y′ =
1

sin−1 x

1√
1− x2

−
1

sin x
cosx

c)

f (x) =

∫ x2

√
x

dt

1 + t+ sin t
=⇒ f ′ (x) =

1

1 + x2 + sin (x2)
·
d

dx

(
x2
)
−

1

1 +
√
x+ sin (

√
x)
·
d

dx

(√
x
)

=⇒ f ′ (x) =
1

1 + x2 + sin (x2)
· (2x)−

1

1 +
√
x+ sin (

√
x)
·
(

1

2
√
x

)



3. Given f (x) = x5 + 3x3 + 2x+ 1,
a) show that f has an inverse g (x).
b) compute g′ (7).
Solution:

a)
f ′ (x) = 5x4+ 9x2+ 2 > 0 for all x ∈ R =⇒ f (x) is increasing for all x ∈ R which implies that
f (x) is increasing for all x ∈ R, and so f (x) is one-to-one for all x ∈ R. Therefore f has an
inverse g (x).

b)
To compute g′ (7): we have

g′ (7) =
1

f ′ (g (7))

But to use this we also need the value of g (7).

If we write x = g (7), then x = f−1 (7).

By trial and error, however it is not hard to see that f (1) = 7, so that g (7) = 1.

Hence we have

g′ (7) =
1

f ′ (1)
=
1

16
.



4. Evaluate the following integrals

(a)

∫
x3 − 4x2 + 3x− 1√

x
dx, (b)

∫
x3
(
x2 + 1

)−1/2
dx, (c)

∫ π/3

π/4

(
sin θ +

1

sin2 θ

)
dθ

Solution:

a)∫
x3 − 4x2 + 3x− 1√

x
dx =

∫ (
x5/2 − 4x3/2 + 3x1/2 − x−1/2

)
dx

=

[
x7/2

7/2
− 4

x5/2

5/2
+ 3

x3/2

3/2
−
x1/2

1/2

]
+ C

=
2

7
x7/2 −

8

5
x5/2 + 2x3/2 − 2x1/2 + C

b)

∫
x3
(
x2 + 1

)−1/2
dx = 2

∫
x2
(
x2 + 1

)−1/2
(
1

2
x dx

)




u = x2 + 1
du = 2x dx
dx = 1

2
du



 −→ 2

∫
(u− 1)u−1/2 du = 2

∫ (
u1/2 − u−1/2

)
du = 2

[
u3/2

3/2
−
u1/2

1/2

]
+ C

=
4

3

(
x2 + 1

)3/2 − 4
(
x2 + 1

)1/2
+ C

c)∫ π/3

π/4

(
sin θ +

1

sin2 θ

)
dθ = [− cos θ − cot θ]π/3π/4 =

(
− cos

π

3
− cot

π

3

)
−
(
− cos

π

4
− cot

π

4

)

=

(
−
1

2
−

1√
3

)
−
(
−
1√
2
− 1
)
= 1−

1√
3



5. Find the area bounded by the graphs y = x2 and y = 2− x2 for 0 ≤ x ≤ 2.
Solution:

To find the point of intersection, we solve

x2 = 2− x2,

so that

2x2 = 2 or x2 = 1 or x = ±1.

Since x = −1 is outside the interval of interest, the only intersection note is at x = 1.

Note that

2− x2 ≥ x2 for 0 ≤ x ≤ 1

and we have

x2 ≥ 2− x2 for 1 ≤ x ≤ 2.

Now the area is

AREA =

∫ 1

0

[(
2− x2

)
− x2

]
dx+

∫ 2

1

[
x2 −

(
2− x2

)]
dx

=

∫
1

0

(
2− 2x2

)
dx+

∫
2

1

(
2x2 − 2

)
dx

=

[
2x−

2x3

3

]1

0

+

[
2x3

3
− 2x

]2

1

=

(
2−

2

3

)
− (0− 0) +

(
16

3
− 4
)
−
(
2

3
− 2
)

=
4

3
+
4

3
+
4

3
= 4.



6. Let R be the region bounded by the graphs of y = x2 (x ≥ 0), y = 2−x and x = 0. Compute
the volume of the solid formed by revolving R about
a) the x-axis
b) the y-axis.
Solution:

a)
By using the method of washers, we have

VOLUME =

∫ 1

0

π
[
(2− x)2 −

(
x2
)2]

dx =

∫ 1

0

π
[
4− 4x+ x2 − x4

]
dx

= π

[
4x− 2x2 +

1

3
x3 −

1

5
x5
]1

0

= π

(
4 (1)− 2 (1)2 +

1

3
(1)3 −

1

5
(1)5

)
= π

(
+
1

3
−
1

5

)

= π

(
2 +

1

3
−
1

5

)
=
32π

15

b)
By using the method of cylindrical shells, we have

VOLUME =

∫ 1

0

2πx
[
(2− x)−

(
x2
)]
dx =

∫ 1

0

2π
[
2x− x2 − x3

]
dx

= 2π

[
x2 −

1

3
x3 −

1

4
x4
]1

0

= 2π

(
(1)2 −

1

3
(1)3 −

1

4
(1)4

)
= 2π

(
1−

1

3
−
1

4

)

=
5π

6


