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e The exam consists of 6 questions.

e Please read the questions carefully and write your answers under the corresponding
questions. Be neat.

e Show all your work. Correct answers without sufficient explanation might not get full
credit.

e Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.
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1. Evaluate the following limits
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Solution:
a)
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Let y = (¢* + 2)"/".
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Therefore L’Hopital’s Rule applies, and so we have
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Therefore L’Hopital’s Rule applies, and so we have
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2. For each of the following functions, calculate the derivative. Do not simplify your answers.
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Solution:
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3. Given f (v) = 2° + 32° + 2z + 1,

a) show that f has an inverse g ().

b) compute ¢’ (7).

Solution:

a)

f'(z) =52* 4+ 922+ 2 > 0 for all € R = f (z) is increasing for all + € R which implies that
f (z) is increasing for all x € R, and so f (x) is one-to-one for all x € R. Therefore f has an
inverse g ().

b)

To compute ¢’ (7): we have

1
AN
But to use this we also need the value of g (7).
If we write z = ¢ (7), then . = (7).
By trial and error, however it is not hard to see that f (1) =7, so that ¢ (7) = 1.

Hence we have




4. Evaluate the following integrals
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Solution:
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5. Find the area bounded by the graphs y = 22 and y =2 — 2% for 0 < z < 2.
Solution:
To find the point of intersection, we solve

2 =2 — 22,

so that

20 =2ora?=1orx = =+1.
Since z = —1 is outside the interval of interest, the only intersection note is at = = 1.

Note that

2—22>2tfor0<z<1

and we have

22>2—z2for1<x<2.

Now the area is
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6. Let R be the region bounded by the graphs of y = 22 (x > 0), y = 2—2 and = = 0. Compute
the volume of the solid formed by revolving R about

a) the z-axis

b) the y-axis.

Solution:

a)

By using the method of washers, we have

1 1
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0 0
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T35 T
b)
By using the method of cylindrical shells, we have
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