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e The exam consists of 5 questions.

e Please read the questions carefully and write your answers under the corresponding
questions. Be neat.

e Show all your work. Correct answers without sufficient explanation might not get full
credit.

e (Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.
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1. Calculate (if possible) the sum of each of the following series:
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Solution:

a) We know by differentiating the geometric series that

. n—1 1
ij T = 5 for =1 <z < 1.
— (1—x)

Then

5371+].: e k(l)k_lz e
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b)
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Thus, we get
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2. In each part, determine whether the series is convergent or divergent. Show your work and
name the test used. -
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Solution:

a) converges by the Root Test:
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©  1/n o0
e 1
b) Z 5~ converges by the Limit Comparison Test when compared with Z —, & convergent
n n
n=1 n=1
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diverges by the Limit Comparison Test with —, the nth term of a divergent
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3. In each part, determine whether the series is absolutely convergent, conditionally convergent,
or divergent. Show your work and name the test used.

. 1 S 1

a 1) —, b 1) —
olution:

gy L " .
a) (—1) Vo converges conditionally since

n=2 -

! > >0,Vn >4 is d i d
Up = —/=—— > Upy1 = ,Vn >4, so u, is decreasing an
Vn? —2 ‘/(n+1)> -2
1

= (0 = convergence by the Alternating Series Test; but

Z la,| = Z \/_ — dlverges by the Direct Comparison Test, because

n=2

1 1 1 = 1
> =5 and Z RET is a divergent p-series.
n=2
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——— converges absolutely by the Integral Test,

- n (In n)
f (r) = ——— is continuous and positive on |2, 00), and
(1 )10
x(Inz
10+1
f(z) = _oFmr <0if z > e 9 so that
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f is eventually decreasing and we can use the Integral Test.
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Thus the improper integral converges and has value Therefore

In2)”

Z o 10 converges by the Integral Test and hence the given series converges absolutely.
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= (22 +3)"
4. Find the radius and the interval of convergence of the power series Z M
— vn+l
Solution:
2 n
If a, = M, then

vn+1

" 2 et 1 Vn+1
lim |2t | gy | 2R VAL <|2x+3| nt ):|2x+3|,

so by the Ratio Test the series converges when

204 3|<l<=-1<2r+3< 1= —2<zx< -1

1
SOR—§

e (D" i, . .
When x = —2, the series is Z , a conditionally convergent series by the Alternating
—vn+l

series Test.

= 1
When & = —1, we have the series E = a divergent series by the Limit Comparison Test.
n
n=0
. 1 . . .
(a) the radius is R = X the interval of convergence is —2 <z < —1, i.e,, [ = [-2,—1)

(b) the interval of absolute convergence is —2 < z < —1

(c) the series converges conditionally at x = —2




5.

1/2 t2
a) Estimate /

o 1+t

(r —tan~'xz) (e** — 1)

dt correct to an error less than 1074,

b) Use series to evaluate lim
) v 0 2x%2—1+ cos(2x)
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Solution:
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Thus, we get
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