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1. CONVERGENT SERIES

(p 840) Find the sum of the series in Exercises 19-24.
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2. CONVERGENT OR DIVERGENT SERIES

Which of the series in Exercises 25-40 converge absolutely, which converge conditionally, and
which diverge? Give reasons for your answers.
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3. POWER SERIES

In Exercises 41-50, (a) find the series’ radius and interval of convergence. Then identify the
values of = for which the series converges (b) absolutely and (c) conditionally.
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(a) the radius is 3; the interval of convergence is —7 < z < —1
(b) the interval of absolute convergence is —7 < z < —1
(c) the series converges conditionally at x = —7.
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which holds for all =

(a) the radius is oo; the interval of convergence is —0co < = < 00
(b) the interval of absolute convergence is —oo < x < 00
(c) there are no values for which the series converges conditionally.
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(c) there are no values for which the series converges conditionally.
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(a) the radius is 1; the interval of convergence is 5 <T<;
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(b) the interval of absolute convergence is —5<r<j3

(c) there are no values for which the series converges conditionally.
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(a) the radius is co; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally.
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(a) the radius is 1; the interval of convergence is —1 <z < 1
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(c) the series converges conditionally at x = —1.
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(a) the radius is 1; the interval of convergence is 0 < z < 2
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4. MACLAURIN SERIES

Each of the series in Exercises 51-56 is the value of the Taylor series at x = 0 of a function
f (z) at a particular point. What function and what point? What is the sum of the series?
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Find the Taylor series at © = 0 for the functions in Exercises 57-64.
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5. TAYLOR SERIES

In Exercises 65-68, find the first four nonzero terms of the Taylor series generated by f at x = a.
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6. NONELEMENTARY INTEGRALS

Use series to approximate the values of the integrals in Exercises 77-80 with an error of mag-
nitude less than 107®. The answer section gives the integrals’ values rounded to 10 decimal
places.)
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7. INDETERMINATE FORMS

In Exercises 81-86 use power series to evaluate the limit.
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87. Use a series representation of sin 3z to find values of r and s for which
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Pogoblem: Find the sum of the series
>

’ n!
correct to three decimal places.

Solution:

We first observe that the series is convergent by the Alternating Series Test because
(i)

1 - 1 - 1
(m+1)! nl(n+1) n!
(i)

0<—<——0asn—
nl n

To get a feel for how many terms we need to use in our approximation, let’s write out the first
few terms of the series:
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Notice that

1 1
U = g5 <z = 0.0002
and 11 1 1 1
sg=1—T14-—>d4— — 4+ ~0.368056

2 6 24 120 720
By the Alternating Series Estimation Theorem we know that

|s — s¢] < ur < 0.0002
This error of less than 0.0002 does not affect the third decimal place, so we have
5~ 0.368

correct to three decimal places.

NOTE: The rule that the error (in using s,, to approximate s) is smaller than the first neglected
term is, in general, valid only for alternating series that satisfy the conditions of the Alternating
Series Estimation Theorem. The rule does not apply to other types of series.

Problem: How many terms of the series do we need to add in order to find the sum to the
indicated accuracy
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Theorem, n = 5.




