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1. DoMAIN, RANGE, AND LEVEL CURVES

(p. 1060) In Exercises 1-4, find the domain and the range of the given function and identify its
level curves.

L. f(z,y) =92 +y*

Solution:

Domain: All points in the zy-plane

Range: z >0

Level curves are ellipses with major axis along the y-axis and minor axis along the x-axis.

2. f(z,y) =e"

Solution:

Domain: All points in the zy-plane

Range: 0 < z < 00

Level curves are the straight lines x + y = In 2z with slope —1, and z > 0.

1
3-g(x,y)=x—y

Solution:

Domain: All (x,y) such that = # 0 and y # 0

Range: z # 0

Level curves are hyperbolas with the x and y-axis as asymptotes.

4. g(z,y) = Va*—y

Solution:

Domain: All (x,y) so that 22 —y >0
Range: z > 0

Level curves are parabolas y = 22 — ¢, ¢ > 0

In Exercises 5-8, find the domain and the range of the given function and identify its level
surfaces.



5. f(x,y,2) =2"+y* — 2

Solution:

Domain: All points (x,y, ) in space

Range: All real numbers

Level surfaces are paraboloidss of revolution with the z-axis as axis

6. g(x,y,2) = 2%+ 4y* + 97°
Solution:

Domain: All points (z,y, z) in space
Rane: Nonnegative real numbers
Level surfaces are ellipsoids with center (0,0, 0)

1

7. h(z,y,2) :—x2+y2+22

Solution:
Domain: All (x,y, z) such that (x,y, z) # (0,0,0)

Range: Positive real numbers
Level surfaces are spheres with center (0,0,0) and radius r > 0.

1

8 hey2) = Gy A

Solution:

Domain: All points (x,y, z) in space
Range: (0, 1]
Level surfaces are spheres with center (0,0,0) and radiusr > 0.

2. EVALUATING LIMITS

Find the limits in Exercises 9-14.

9. lim eYcosw
(z,y)a(ﬂ‘,ln 2)

Solution:

lim  eYcosx = e™2cosm = (2)(—1) = —2
(z,y)—(m,In2)

10.  lim 1Y
(z,y)—(0,0) * + CcOS Y
Solution:
. T4y 240
lim

(z,4)—(0,0) T + CcOS Y B 2+ cos0 -




-y

(,y) — (1,1) ¥~
Solution:
. r—y . xr—y
lim 5 5 = lim
()= (1,1) @78 (my) =11 @y @+y)
x # +y x # +y
. 1 1 1
= lim =—— ==
(w,y) = (1,1) *+y 1+ 2
TFY
3,3 _
12. im Y1
(z,y) = (1,1) 2y —1
Solution:
, 3y — 1 , (zy — 1) (2®y* + 2y + 1)
lim — = lim
(z.y) = (L) @ =1 (z.9) —(1,1) zy—1
= lim (PP 42y +1)=1"1"+(1) (1) +1=3
(z,y) — (L, 1)
13. lim Injz+y+ 2|
P—(1,—-1,¢)
Solution:
lim Injz+y+z = lim In|l1+(-1)+el=lhe=1
P—(1,-1,¢e) P—(1,—-1,¢)
14. lim tan™! (z +y + 2)
P—(1,-1,-1)
Solution: -
lim tan”! (z+y+z) =tan"! (z+ (=1) + (1)) =tan"' (=1) = —~
P —(1,-1,-1) 4

By considering different paths of approach, show that the limits in Exercises 15 and 16 do not
exist.

15. lim —

(,y) — (0,0) "~ Y

y # 2°
Solution:
Let y = kx, k # 0. Then
k 2

lim v _ lim ’ = which gives different limits for
(2.9) = (0,0) =Y (a,ka®) — (0,0) " ~ha? 1= H

y # 2°

different values of £ = limit does not exist.




x2+y2

16. lim

(z,y) — (0,0) Y

zy # 0
Solution:
Let y = kx, k # 0. Then
2 2 9 9 )
1
lim Tty = lim v+ (hz) = +k which gives different limits for
(z,y) — (0,0) 1Y (2, kz) — (0,0) « (kx) A
zy # 0

different values of £ = limit does not exist.

2 _ 2
17. Let f(z,y) = ;T; for (z,y) # (0,0). Is it possible to define f(0,0) in a way that

makes f continuous at the origin? Why?
Solution:
Let y = kx. Then

22 —

, , a?— (kx)>  1—Fk?
lim g — lim 5 5 = 5
(z,y) — (0,0) T*+Y*  (z,kz) — (0,0) 22+ (kz)” 1+Fk
xy #0
which gives different limits for different values of & = limit does not exist so f (0,0) cannot
be defined in a way that makes f continuous at the origin.

18. Let " |
sin(z —y) .
ha)={ Tl + ol Z'f |z + |y[ # 0
0 il () =(0.0)
Is f continuous at the origin? Why?
Solution: . | |
Along the z-axis, y = 0 and lim sin (z — y) _ iy SRT { 1 z'f z>0 s
(z,y) — (0,0) |zl +1yl r—0 |z| —1 if <0

the limit fails to exist = f is not continuous at (0, 0).

3. PARTIAL DERIVATIVES

In Exercises 19-24, find the partial derivative of the function with respect to each variable.

19. g(r,0) =rcosf +rsiné
Solution:

dg ., 09 :
ar = cosf +sinf, 90— —rsinf + rcosf

1
20. f(x,y) = 3 In (x2 + y2) + tan™! %

Solution:



of _1(_ 2 (=) = y -y
or 2\ a2 +y2 1+(£)2_:c2+y2 22 a2 42
of _1( 2y N\, G __y _x _ w+y
oy 2 \ 22+ 2 1+(£)2_:c2+y2 24y a2 492
1 1 1
21. f(Ry,Ry,R3) = — 4+ — + —
f( 1, 412, 3) R1+R2+R3

Solution:

of 1 9f 1 af 1

OR,  RI'OR, R} ORy R}

22. h(zx,y,z) =sin 27z +y — 32)

Solution:

hy (x,y,2) = 2w cos (2mz +y — 32) , hy (v, 9y, z) = cos (2mx + y — 32),
h, (z,y,z) = —3cos (2mx + y — 32)

RT
23. P(n,R,T,V) = =

v
Solution:
o°P RT OP nT OP nR 0P nRT

on V' OR V' 0T V' oV V2

1 [T
i ;
o (r 0, Tyw) = —2z —,
T

fi(r, 1, T, w) = 12 0

1 11 1 [T
Jr(r . Tow) = (27’[) (W)( ):m\/%zélrlT\/%’

1\ /T, 1

fu (r, 1T, w) = (ﬂ) \f;( 2 ) = i\ 7w

4. SECOND-ORDER PARTIALS

Find the second-order partial derivatives of the functions in Exercises 25-28.

T
25. g(x,y)=y+§

Solution:
99 _ 2
or y’



9%g 1

ozdy 12

26. g (v,y) = " +ysinz
Solution:

9o (x,y) = €" +ycosz,

gy (z,y) =€” +sinz,

Gzz (2,y) = €* —ysinz,

Gyy (7,y) =0,

Gy (‘Tvy> = Gyz («T,y) = COSX

27. f(z,y) =z +ay —52° +In (2% + 1)

Saolution: )

T
= =14y 152+ ———
33: + Yy x + .CL’Q + 1’
of

o :
2—2x
@ - —30$—|— ($2—|—1)2’
0% f
oy
o*f .
Oyox

:,’1;"

=0,

28. f(z,y) =y — 3wy + cosy + Te

Solution:

fJ? (x7y) = _Sy’

fy (% y) =2y — 3x —siny + 7eY
fl’l’ (l’,y) - 0,

Jyy (x,y) =2 — cosy + Te,
fzy (.T,y) = fy:v (SC,y) = -3.

5. CHAIN RULE CALCULATIONS

29. Find dw/dt at t =0 if w =sin (zy + ), x =¢', and y = In (t + 1).

Solution:

8_11) = (xy + m)
9 ycos (Ty ,
ow

= xcos (zy + m),

dy



de

ar ¢

dy _

dt  t+1

:>d_w—[ cos (zy + )]€t+[xcos(g: + )] L 0= —=14y=0

dw 1
= limo= (0) (1) + [(1) (1) (O_H) .

30. Find dw/dt at t =1 if w = xe? + ysinz —cosz, = = Wt y=t—1+1Int, z = t.

Solution:
ow
or  ©
a—w—xey—ksinz
oy ’
ow :
azycosszsmz,
d_w:t—l/Z
a1
Y
214 =
i
ot
dw _1/2 , 1 ,
:E:eyt + (ze¥ + sin z) 1+¥ +(y+cosz+sinz)mt =1= z =2,y =0, and
N
w
— - == () (M) +((2) (1) = 0) (2) + (0+0) 7 = 5.

31. Find Ow/0r and Ow/0s when r = 7w and s =0 if w =sin (2z —y), x =7 +sins, y = rs.
Solution:

— =2cos (2z —y),

— — =[2cos (2 —y)] (1) + [—cos (22 — y)] (s);r =7 and s = 0 implies x = 7 and y = 0
— — |(r,0)= (2cos2m) — (cos2m) (0) = 2;
— — = [12cos (22 — y)| (cos s) + [— cos (22 — y)] (r)

— — |(r,0)= (2c0s27) (cos 0) — (cos2m) () =2 —




32. Find Ow/0u and dw/dv when u = v = 0 if w = In V1 + 22sin — tan™' 2 and x = 2" cos v.

Solution:
ow dwdxr < x 1

ou  drdu 1+22 2241
ow 2 1 2
A P

)(Qe“cosv);u:v:0:>x22

ou 5 5 5
ow B dw@ T 1

e — — 9% &i
ov  dx Ov 1+ 22 x2+1)( e"sinv)

ow 2 1
— oo (5-3) @ =0

33. Find the value of the derivative of f (z,y, z) = xy + yz + zz with respect to ¢ on the curve
x =cost,y =sint,z = cos (2t) at t = 1.

Saolution: 5 5 J J y
Dz :y+z,a—£ :x+z,a—£ :y+x,d—f :—sint,d—?j:cost,d—i = —2sin2t¢
d
— d_J; = — (y+ 2) (sint) + (z + z) (cost) —2(y+ x) (sin2t);t = 1 = = = cosl,y = sin1,

and z = cos 2

= li=1= — (sin1 + cos 2) (sin 1) + (cos 1 + cos 2) (cos 1) — 2 (sin 1 + cos 1) (sin 2).

34. Show that if w = f (s) is any differentiable function of s and if s = y + 5z, then

ow ow
o Py
Solution:
Jw _dwds _ 5 dw
dr. ds Or ds
an
Jw _dwls _jydw _dw
oy  dsdy ds  ds
ow ow dw dw
— o oy ¥ B =0

6. IMPLICIT DIFFERENTIATION

Assuming that the equations in Exercises 35 and 36 define y as a differentiable function of =z,
find the value of dy/dx at point P.

35. 1 —x—y® —sinzy =0, P(0,1)

Solution:

F(z,y)=1—-2—y* —sinazy = F, = —1 —ycosry and F, = —2y — x cos 1y
dy E, —1 —ycosxy 1+ ycosxy
dx F, —2y —xcosxy  —2y —xCcosxy

— at (z,y) = (0,1) we have

dy 1+1

Jp 0= "5 —1.



36. 22y + "V —2 =0, P(0,In2)

Solution:

F(x,y)=2xy+ et —2 = F, =2y +¢e"" and F, = 2z + "1V
dy F, 2y + ety

dx F, 2@+ erty
= at (x,y) = (0,In2) we have

dy 2In2+2
r |(0.n2)= o012 (In2+1)

7. DIRECTIONAL DERIVATIVES

In Exercises 37-40, find the directions in which f increases and decreases most rapidly at Py and
find the derivative of f in each direction. Also, find the derivative of f at F, in the direction
of the vector v.

37. f(x,y) =cosxcosy, By (m/4,m/4),v =31+ 4j
Solution:

Vf=(—sinzcosy)i— (coszsiny)j

= Vg~ 7213

= V= (3 + () ==

_ Nf N2y A2
YT T )
—> f increases most rapidly in the direction u = —lgi _ Y2 j

V2.

and decreases most rapidly in the direction —u = 7i +—1j;

/3 s

(Duf)Po = |vf| = 7 and (D_uf)PO = —|Vf| — _7;

= (Duf)p, = VS -wr = (‘%> @ " (_%) @ i

38. f(x,y) =2, Py(1,0),v=1+]
Solution:

Vf =2we i — 2% %j

= V[ |@0=2i-2j

= |Vfl=/(2)" + (-2)" = 2v2;
—Vvf _ 1s_ 15
UWEwn T et v e
. . . . . o Qe Qe
= f increases most rapidly in the direction u = =i — =]

V2, V2,

and decreases most rapidly in the direction —u = —— + -
(Duf)PO = ‘Vf‘ = 2\/5 and (Dfuf)po E— |Vf| — _2\/5;
v o i+j

— 1 s 1 s
W= = e ettt



= (Du, f)p, =V uw=(2) (%) +(-2) <%> _

39. f(z,y,2) =In(2x +3y+62), Py (—1,—1,1),v =2i+ 3j + 6k

Answer:
f increases most rapidly in the direction u = —1 -z J + 6k

3 6
and decreases most rapidly in the direction —u = —?1 + - Jj— ?k;

(Duf)p, = [V fI=Tand (D-uf)p =~ |Vf]=
w = = 2i+ 242k
— (Dulf)PO = (Duf)Po =T

40. f(2,y,2) =2* +3zy — 22 +2y+2+4, P(0,0,0),v=i+j+k
Solution:

Vi=Q2x+3y)i+Bz+2)j+ (1 —-22)

— Vf |(000 2_] —+ k

u= %f% f.] + \}k

— f increases most rapidly in the direction u = % Jj+ %k

1
and decreases most rapidly in the direction —u = ——j — —=k;
ne NV
(Duf)PO = ‘Vf‘ = \/5 and (D—uf>P0 = — ‘Vf‘ — _\/5,
N i+j+k 1 1 » 1
W= = e = va e UK

— Du ) = V7w =0 () + @) (5) + ) (55) - VB

41. Find the derivative of f (x,y, 2) = zyz in the direction of the velocity vector of the helix
r(t) = (cos3t)i+ (sin3t)j+ 3tk

r(t) = (cos3t)i+ (sin3t) j+ 3tk
— v (t) = (—3sin3t)i+ (3cos3t)j+ 3k

T )
:>v<§>:—33+3k
Lo,
== u=——7]+—=k;
2R

f(z,y,2) = xyz = Vf = yzi + xzj + zyk;
t= g yields the point on the helix (—1,0,7)
1 T

— V[ |(*1,0,7r): —mj =V f-u=(-7j)- <_%J + ﬁk> _ E

42. What is the largest value that the directional derivative of f (x,y,2) = zyz can have at
the point (1,1,1)?

Solution:

f(z,y,2) =2yz = Vf =yzitxzj+ayk; at (1,1,1) we get Vf =i+ j+k —> the maximum
value of Dy f |a11,0= |V f| = V3



43. At the point (1,2), the function f (x,y) has a derivative of 2 in the direction toward (2,2)
and a derivative of —2 in the direction toward (1,1).

a. Find f, (1,2) and f, (1,2)

b. Find the derivative of f at (1,2) in the direction toward the point (4, 6).

Solution:

(a)

Let Vf = ai + bj at (1,2). The direction toward (2,2) is determined by v; = (2 —1)i +
(2—2)j=1i=usothat Vf -u=2= a=2. The direction toward (1,1) is determined by
vo=(1-1)i+(1—-2)j=—-j=usothat Vf-u=-2= —b=-2.

Therefore
VS =2i+25if (1,2) = f, (1,2) = 2.
(b)

The direction toward (4,6) is determined by vy = (4—1)i+ (6 —2)j = 3i+4j=—=u =

3. 4 14
—_ —] :>v . = —
R fru=-

8. GRADIENTS, TANGENT PLANES, AND NORMAL LINES

In Exercises 45 and 46, sketch the surface f (z,y, z) = ¢ together with V f at the given points.

45. 2 +y* + 2> =0; (0,—1,%£1),(0,0,0)
Solution: omitted

46. 12 + 22 = 4; (2,£2,0), (2,0, 42)
Solution: omitted

In Exercises 47 and 48, find an equation for the plane tangent to the level surface f (x,y,2) = ¢

at the point Fy. Also, find parametric equations for the line that is normal to the surface at
B.

47. 2* —y—52=0, Py(2,—1,1)

Solution:

Vf=2i-j—5k = Vf |g-11)= 4 — j — 5k = Tangent Plane: 4(z —2) — (y+1) —
5(2—1)=0= 42—y —52=4; Normal Line: z =2+4t,y=—-1—t,z=1—5t.

48. 2* + 1y  + 2 =4, Py(1,1,2)

Answer:

Tangent Plane: 2z 4+ 2y 4+ 2 — 6 = 0;

Normal Line: z =1+ 2t,y =14 2t,2 =2+ 1.

In Exercises 49 and 50, find an equation for the plane tangent to the surface z = f (z,y) at the
given point.



49. z =In (2* +y?), (0,1,0)

Solution:

% 2z N % |

or 2+ 192 oz 'OL0)
and

0z 2y 0z

— = — — =2
thus the tangent plane is
2(y—1)—(z—0)=0o0r2y—2z—2=0

50. z =1/ (2 + %), (1,1,1/2)

Solution: 5 . 9 5 .
z —2 z z 2 z
—_— = —2 2 2 > — = —— d —_— = —2 2 2 > — = ——
ox Z (.ﬁ(}' +y ) ox ‘(17171/2) 2 an ay Y (.T +y ) ay |(1,1,1/2) 9
1 1 1
; thus the tangent plane is —é(x—l)—§(y—1) —§(z—1) =0orz+y+2:-3=0

In Exercises 51 and 52, find equations for the lines that are tangent and normal to the level
surface f (z,y) = c at the point Fy.

51. y —sinz =1, Py (m,1)

Solution:

Vf=(—cosz)i+j = Vf|z1=1i+j = the tangent lineis (z —7)+ (y—1) = 0 =
r+y=m+1;thenormal lineisy—1=1(z—m)=y=x—-—7n1+1

2 2
Y T 3
52. = - =2 Py(1.2
9 2 2 0(1,2)

Answer:
y=—2x+4

9. TANGENT LINES TO CURVES

In Exercises 53 and 54, find parametric equations for the line that is tangent to the curve of
intersection of the surfaces at the given point.

53. Surfaces: 22 + 2u+22=4, y=1,

Point: (1,1,1/2)

Solution:

Let f(x,y,2) =2 +2y+2z—4and g (z,y,2) =y — 1. Then

V= 2ai+ 2+ 2k |(111/2=2i+ 2j + 2k and Vg = j = V[ x Vg = —2i + 2k

O N =
— N .
N
Il



. 1
:>thehnelsx:1—2t,y:l,z:§+2t

54. Surfaces: 2> + 192 +2=2, y=1,
Point: (1/2,1,1/2)
Answer: ]
= — —t = 1’ = — t
z 5 Y z 5 +

10. LINEARIZATIONS

In Exercises 55 and 56, find the liearization L (z,y) of the function f (z,y) at the point F.
Then find an upper bound for the error £ in the approximation f(x,y) ~ L (z,y) over the
rectangle R.

55. f (z,y) =sinzcosy, Py (m/4,7/4)
R: }x—%‘ §0.1,‘y—%) <0.1

Solution: .
f(m/4,m/4) = 3
1
fo (m/4,m/4) = cosz cos Y |(r/an/a)= >
. . 1
fy ()4, m/4) = —sinxsiny |(x/a,x/2)= =
11 1 1 1 1
L — 4 (=)A= = (y—7/A) = = + g — =y
— (xay) 2+2($ 7'('/) 2(y 7-(/) 2—|—2£L‘ 2y’
faz (x,y) = —sinz cosy,
fyy (x,y) = —sinz cosy,
and
fa:y (x,y) = —COSSE‘SiIly.
Thus an upper bound for £ depends on the bound M used for |fy.|,|fyyl, and | fayl-
2 1 2 2 2
With M = g we have |E (z,y)| < 5 (%) (’x _ _) ‘y _ _D < % (0.2)2 < 0.0142,
M = ’
1 7'(' 2 1

56. f(z,y) =2y —3y* +2, Py (1,1)
R:|lx—1/<0.1,]ly—1] <0.2
Solution:

f(1,1) =0,

f:c(l 1 —y|11—1

;H
—~~
)_\
—_
S—
Il
8
| =
=2
<
>—A
,_.
||
cn



= maximum of |f,,|,|fy,], and |fs,| is6 = M =6

s |E ()| < % 6) (le — 1 + |y — 17?) = % (6) (0.1 +0.2)2 = 0.27

Find the linearizations of the functions in Exercises 57 and 58 at the given points.

57. f(x,y,2) =2y + 2yz — 3zz at (1,0,0) and (1, 1,0).
Solution:
f (17 Oa 0) = Oa fz (17 07 0) =Yy—- 3z |(1,0,0): 0,
fy (1, 0, 0) =x+ 2z ‘(17070): 1
f-(1,0,0) = 2y — 3z |1,00= —3
x

:>L( U,2)=0(x—=1)+(y—0)—3(2—0) =y — 3z;
f(1,1 70)—1

f=(1,1,0) =1

fy(l,l,O)ZI

fz(l’]'?O) 1

(r,y,2) =14 (x—-1)+(y—-1)—1(z-0)=z+y—2z—1.

58. f(x,y,2) = V2coszsin (y + z) at (0,0,7/4) and (7/4,7/4,0).
Solution:

£(0,0,7/4) =1, £, (0,0,7/4) = —v2sinzsin (y + 2) |(00.x/2= 0,
£, (0,0,7/4) = V2 cosx cos (y + 2) |©.0x/9= 1

£.(0,0,7/4) = V2 cos z cos (y + 2) l(0,0,7/0=1
:>L(:L’,y,z):1+1(y—0)+1<z—z) :1+y+z—z;

3 4 4
f(r/am/4,0) = 22,
fo(m/4,m/4,0) = —g
fy (m/4,m/4,0) = g
fo(m/4,m/4,0) = ?

11. LocAL EXTREMA

Test the functions in Exercises 65-70 for local maxima and minima and saddle points. Find
each function’s value at these points.

65. f(2,y) =2 — 2y +y*+ 22+ 2y — 4.
Solution:

folzyy)=2x—y+2=0

and

fe(x,y)=—2+2y+2=0



= 1 = —2 and y = —2 = (—2, —2) is the critical point;

fyy( ’ ) - 2

fxy( 2 —2) -1

— fmfyy Iy =3 >0 and f,, > 0 = local minimum value of f (-2, —-2) = —8.

66. f(x,y) = 52 + 4oy — 2y° + 4o — 4y
Answer:

The critical point is (0, —1)

saddle point with f(0,—1) =2

67. f(x,y) =22° 4+ 3zy + 20°
Answer:

1 1
The critical points are (0,0) and (—5, —5)

1 1 1
saddle point with f <—§, —§> =1

68. f(x,y) =2® +y* — 3wy + 15
Answer:

The critical points are (0,0) and (1,1)
saddle point with f(0,0) = 15

local minimum value of f(1,1) =14

69. f(2,y) = 2%+ ¢® + 327 — 3y?

Answer:

The critical points are (0, 0) (0,2),(—2,0) and (—2,2)
saddle point with f(0,0) =
local minimum value of f (0,
local maximum value of f (—
saddle point with f (—2,2) =

)
2,0) =4
0

70. f(x,y) = 2* — 8% + 3y* — 6y

Answer:

The critical points are (0, 1), (2, 1), and (—2,1)
saddle point with f (0,1) = —

local minimum value of f (2, ) =—
local minimum value of f(—2,1) =

12. ABSOLUTE EXTREMA

In Exercises 71-78, find the absolute maximum and minimum values of f on the region R.

1. f(x,y) =2+ 2y +y* — 32+ 3y



R is the triangular region cut from the first quadrant by the line x +y =4
Solution:

Let O(0,0),A(0,4),B(4,0).

(i) On OA, f(z,y) = f(0,y) = ¢* +33y for 0 <y <4

3
But | 0, —§> is not in the region.

Endpoints: f(0,0) =0 and f(0,4) = 28.

(ii) On AB, f (z,y) = f (z,—x +4) = 2> — 10z + 28
for0<z<4= f'(v,—2+4)=2x—-10=0
—x=5y=—1

But (5,—1) is not in the region.

Endpoints: f(4,0) =4 and f(0,4) = 28.

(iii) OnOB,f(x,y):f(:c,O):x2—3xf0r0§x§4:>f/(x,0):2x—3:>x:gand

3 3 9
fory=0—= 2 0 ) is a critical point with for f (—, 0) = ——.

2 4
Endpoints: f(0,0) =0 and f(4,0) = 4.
(iv) For the interior of the triangular region, f,(z,y) = 20 +y —3 = 0 and f,(z,y) =
r+2y+3=0=z=3 and y = —3.
But (3,—3) is not in the region. Therefore the absolute maximum is 28 at (0,4) and the

absolute minimum is —Z at <g, 0).

72. f(o,y) =2 —y* — 20 +4y+1

R is the rectangular region in the first quadrant bounded by the coordinate axes and the lines
r=4,y=2

Solution:

Let O(0,0),A(0,2),B(4,2),C(4,0).

(i) On OA, f (z,y) = f(0,y) = —y* +4y+1for 0 <y <2

= f(0,y) =2y +4=0=y=2.

But (0,2) is not in the interior of OA.

Endpoints: f(0,0) =1 and f (0,2) = 5.

(ii) On AB, f (z,y) = f (2,2) =2*> =22+ 5

for0<z<4= f'(2,2)=22—-2=0

—r=1y=2.

(1,2) is an interior critical point of AB with f(1,2) = 4.

Endpoints: f(1,2) =4 and f(0,2) = 5.

(iii) On BC, f(z,y) = f(4,y) = = +4y +9for 0 < y <2 = f' (4,9) = 2y +4 =0 =
y=2andr =14

But (4,2) is not in the interior of BC.

Endpoints: f(4,0) =9 and f (4,2) = 13.

(iv) On OC, f(z,y) = f(2,0) =2 —22+1for 0< 2 <4 = f'(2,0) =20 -2 =2 =1
and y = 0 = (1,0) is an interior critical point of OC with f(1,0) = 0.

Endpoints: f(0,0) =1 and f (4,0) = 9.

(v) For the interior of the rectangular region, f, (z,y) =2x —2=0and f, (z,y) = -2y +4 =
0= 2x=1and y=2.

But (1,2) is not in the interior of the region. Therefore the absolute maximum is 13 at (4, 2)
and the absolute minimum is 0 at (1,0).



73. f(x,y) =y —ay — 3y + 2
R is the square enclosed by the lines x = +2,y = +2
Answer:

17 1
Absolute maximum: 18 at (2, —2); absolute minimum is -7 at (—2, 5)

T4, f(x,y) =22+ 2y — 2> — 1

R is the square region bounded by the coordinate axes and the lines x = 2,y = 2 in the first
quadrant.

Answer:

Absolute maximum: 2 at (1, 1); absolute minimum is 0 at the four corners (0,0), (0,2),(2,2)
and (2,0)

75. f(x,y) = 2% —y* — 22 + 4y

R is the triangular region bounded below by the coordinate axes and the lines x = 2,y = 2 in
the first quadrant.

Answer:

Absolute maximum: 8 at (—2,0); absolute minimum is —1 at (1,0).

76. f(x,y) =22+ 2y — 2> — 9

R is the square region bounded by the coordinate axes and the lines x = 2,y = 2 in the first
quadrant.

Answer:

Absolute maximum: 18 at (1, 1); absolute minimum is —32 at (2, —2).

7. f(2,y) =220+ 2y — 2> — 1

R is the square region bounded by the coordinate axes and the lines x = 2,y = 2 in the first
quadrant.

Answer:

Absolute maximum: 4 at (1,0); absolute minimum is —4 at (0, —1).

78. f(x,y) =22+ 2y — 2> — 12
R is the square region bounded by the coordinate axes and the lines x = 2,y = 2 in the first
quadrant.

13. LAGRANGE MULTIPLIERS

79. Find the extreme values of f (z,y) = 2* + % on the circle 2° 4+ ¢* = 1.

80. Find the extreme values of f (x,y) = 2y on the circle 2% + y* = 1.




81. Find the extreme values of f (z,y) = 2® + 3y* + 2y on the unit disk 22 + y* < 1.

82. Find the extreme values of f (z,y) = 2° + y* — 3x — xy on the disk 2° + 3> < 9.

83. Find the extreme values of f (z,y,2) = x —y + 2 on the unit sphere 2> + y* + 2> = 1.

2

84. Find the points on the surface 2 — xy = 4 closest to the origin..

85. A closed rectangular box is to have volume V cm3. The cost of the material used in the
box is a cents/cm? for top and bottom, b cents/cm? for front and back, and ¢ cents/cm? for
the remaining sides. What dimensions minimize the total cost of materials?

86. Find the plane x/a + y/b+ z/c = 1 that passes through the point (2, 1,2) and cuts off the
least volume from the first octant.

87. Find the extreme values of f (z,y,2) = x (y + z) on the curve of intersection of the right
circular cylinder 22 + y? = 1 and the hyperbolic cylinder zz = 1.

88. Find the point closest to the origin on the curve of intersection of the plane z +y + 2z =1
and the cone 2* = 22 + 2¢°.

14. PARTIAL DERIVATIVES WITH CONSTRAINED VARIABLES

In Exercises 89 and 90, begin by drawing a diagram that shows the relations among the vari-
ables.

89. If w = 2%e¥* and z = 22 — ¢? find

a (20) b (20) e (2
'8yz'8zx'8yy

Solution:
(a) y, z are independent with w = 2%e¥*

and
5 o ow Owdxr Owdy Owoiz
z=a" -y = = —— =

ox
= T2 T (2pe) — 2099 (1 2.9\ (0)-
Jy 3$3y+6y8y+azay (27e”?) +(zxe)()+(yxe )(0)7

Jdy

0
z:x2—y2:>0:2x—$—2y:>—$:g;
dy oy «x
therefore
ow Yy

- = (2peY? (_)‘I' 2, yz 2 + 2\ yz
o ). (xe)sc zx‘e (2y + z2%) e

(b) z,z are independent with w = 2%e¥*
and



yo g Qw _Owdr  Owly  Owlz
-y 92 0x 9.  Oydz 9202
dy gy 1

0z 0z 2y

— (2000) (0) + (aa0r) S 4 (o) (1

=1’y  =1=0-2y

therefore

8_w - 2,yz _i 2,97 2,92 _ 2
(az)z—(zxe )( 2y>+y:ce = 2% [y %

(c) 2,y are independent with w = z%e¥*
and

ow Owdxr Owdy OJwoiz ox
= 12 2 . _ e g ZrrE VAN ided 2 yz 2 yz .
PRV = 0z  Ox 8z+ dy 8z+ 0z 0z (2ze”) <8z> +(Z:C ¢ )(O)—i—(y:c ¢ )(1>’

ox ox 1

2 2

= —yY=1=2r— 0= — = —;
FmE Y x@z 0z 2z’
thgrefore .

O ) = e (5 ) bt = (1)

90. Let U = f (P, V,T) be the internal energy of a gas that obeys the ideal gas law PV = nRT
(nand R are constants). Find

a () b, (2
“\or ), " \ov ),

Sotution: ou oUoP 90UV
(a) T, P are independent with U = f (P,V,T) and PV = nRT — 9T = 9P 5T + AT +
ou o

oT 0T

ou ouov  oU
=o' O ovor mar Y
vV  nR

ov
PV_RRT:>P8_T_nR:>a_T_?’
therefore,

oU (09U (R, oU
or ), \ov P oT
(b) V,T are independent with U = f (P,V,T) and PV = nRT —

ou or
oT oV

oU _ouop UV
oV oPOV 9V IOV

ou oP ou oU
= (8_]3) (8_V) +8_V(1>+6_T(0)
PV:nRT:>Vg—€+P: (nR)
therefore,

(50), - (57) (-4) 5

— 0P __
gv VT S

15. THEORY AND EXAMPLES

91. Let w = f (r,0),7r = /22 + 42, and § = tan"' (y/z). Find Ow/0z and Ow/dy and express
your answers in terms of r and 6.
Solution:



Note that
r=rcosf and y =rsinf = r = /22 + 92 and 0 = tan"* (y/z).
Thus

Ou_owor owon _ow( s\, Ow( —y \_ 0w (sm0)ou
Or  Ordx 000z  Or \ /a2 12 90 \ 22342 ) — " — | 257

Ow _Owor owdh Ow y Y N Wy IO LA K
gy aroy 0oy or \ i) 00 \a2ty2) Vo T

92. Let z = f (u,v),u = ax + by, and v = ax — by. Express z, and z, in terms of f,, f, and
the constants a and b.
Solution:

U ov
2y = fu% + fv% = afu + a’f’m
and

ou ov
Ry = fua_y + fva_y - bfu - bf’m

93. If a and b are constants, w = u> tanhu + cosu, and u = ax + by, show that

ow . Ow
aa—y =bo
Solution:
—u:band—u:a:>a—w:d—w@:ad—w
Jy ox Oor  duldx du

and
ow dw @ dw 1 6_w B dw

8—y_%8y: %:58x_@

and
Tow _dw __ 10w _10w __ ,ow _ ow
boy du adxr by 8x_a8y

94. If w=1In (:c2 + 92 +22) ,x=1r+8sy=r—s,2z=2rs find w, and w, by the Chain Rule.
Then check your answer another way.

Solution:
ow 2z B 2(r+s) B 2(r+s) 1

%:x2+y2+2z_ (7“+s)2—|—(7“—s)2—|—2(27“5) C2(r24-2rs+s2)  r+s’
ow 2y _2(r—s)

8_y:x2+y2+2z_2(r+5)2’

and

B2 ow_owor oway owos 1 ros

0: P4y +22 (r+s) or 0wz dr  Oyor 0z0r  r+s  (r+s)
1 2r + 2s 2
| (25) = 5 =
(r+s) (r+s)* r+s

an

bu_owos owoy owo: 1 r-s | oy

s Oz ds Oyds 0z0s r+s (r+s)? L(r+s) e




95. The quations e cosv —x = 0 and e"sinv —y = 0 define u and v as differentiable functions
of x and u. Show that the angle between the vectors

@ + @ and @i + @
or Oy or 0Oy
is constant.
Solution: 5 5 9
e'cosv —r =0 = (€UCOSU>6_Z — (e"sinv) 8;]’ =1; e'sinv—y = 0 = (e”sinv)ﬁ—z —
v
(" cosv) — e =0.
, ) u v .
Solving this system yields o e “cosv and — = e “sinw.
x x
Similarly, e* cosv —x = 0 = (e" cosv) aZ (e"sinv) g—; =0
and 5
e'sinv —y =0 = (e"sinv) a_u + (e cosv) a—Z =1.
i . . u v _
Solving this system yields — = e “sinv and i e “cosw.
Therefore (%1 + g—Z ) . (gz gz ) = [(e’“ oS v) i+ (e*“ sinv) j} . [(—e’“ sinv) i+ (e*“ oS v) j} =

0 = the vectors are orthogonal = the angle between the vectors is the constant g

96. Introducing polar coordinates x = rcosf and y = rsinf changes f (x,y) to g (r,0). Find
2

the value of % at the point (r,0) = (2,7/2), given that
of _of 0 _OF _
oxr Oy 0x2  Oy?

at that point.
Solution:

dg 0fox  Ofdy . Of of
20~ B2 00 + == By 90 = (—rsind) o + (rcos @) 2

0%g B 82f893 0*f Oy of 0*f 0x  O*f Oy
— g5t = (-rsind) (a 290 Oyor ae) (rcosf) 5y + (reost) (ayax% Ty ae)
9
(rsinf) —

dy
= (—rsinf) <g§ + gz> — (rcosf) + (rcosf) (% + %) — (rsind)

= (—rsinf 4+ rcosf) (—rsinf + rcosf) — (rsinf +rcosf) = (-2)(-2) = (0+2) =4 -2 =2
at (r,0) = (2, g)

97. Find the points on the surface

(y+ 22+ (z—2) =16

where the normal line is parallel to the yz-plane.
Solution:



(y+ 22+ (z—2)° =16 = Vf = —2(z—x)i+2(y+2)j+2(y + 22 — 2) k; if the normal

line is parallel to the yz-plane, then z is constant —- Fi 0= 2(z—2)=0= 2z =
x

t= (y+2°+(z—-2>=16=y+2=+4.
Lletz=t=—=2=t=1y=—-t+4.
Therefore the points are (t,—t +4,¢),t¢ a real number.

98. Find the points on the surface
ry+yz+r—x—22=0

where the tangent plane is parallel to the xy-plane.
Solution:
Let f(x,y,2) = 2y + yz + zo — 2 — 2* = 0. If the tangent plane is parallel to the xy-plane,
then V f is perpendicular to the zy-plane = Vf-i=0and Vf-j= 0.
Now Vfi=(y+z—1)i+(x+2)j+(y+r—22)ksothat Vf-i=y+2-1=0=y+2=
l=—=y=1—z2,and Vf-j=2+4+2=0=—= 2 = —2. Then
1
—z(l—z)+(1—z)z+z(—z)—(—z)—z2:():>z—2z2:0:>z:§orz:0.
1 1 1 111

N = — = —— —_= — _— = =

oW 2 2:>x 2aundy 2:> 2'3'3
y=1=(0,1,0) is a second desired point.

) is one desired point; 2 = 0 = x =0 and

99. Suppose that V f (z,vy, z) is always parallel to the position vector xi + yj + zk. Show that
f£(0,0,a) = (0,0, —a) for any a.

Solution: 9 )
Vi=Azi+yj+zk) = 8_f =\t = f(z,y,2) = 5)\:62 + g (y, z) for some function g
x
1
= \y = g—i = g—i = g(y,2) = 5)\y2+h(2) for some function h = Az = % =
1 1
% =K (z) = h(z) = 5)\22 + C for some arbitrary constant C = g (y,z2) = 5)\y2 +
2

(—)\22 +C ) = f(r,y,2) = %)\:ﬂ2 + %)\gﬁ + %)\22 +C = f(0,0,a) = %)\aZ + C and

1
£(0,0,—a) = 5)\ (—a)®+C = f(0,0,a) = f(0,0,—a) for any constant a, as claimed.

100. The one-sided directional derivative of f at P (xg, 3o, 20) in the direction u = u;i+usj+usk
is the number

lim [ (zo + suq,yo + sug, 20 + suz) — f (o, Yo, Zo)‘

s—0F S
Show that the one-sided directional derivative of

f(2,y,2) = Va2 +y? + 22

at the origin equals 1 in any direction but that f has no gradient vector at the origin.
Solution:

df :hmf(0+su1,0+su270+su3)—f(0,0,0)78>0
s/, (0,0,0) *° s
V(su)? + (su2)? + (sus)* = 0
= lim ,s >0

s—0 S



2 2 2

. SA/Juy +us +u

— lim 1 2 3
S

= lim |u| = 1;
s—0 s—0 5
however, V f = i+ Y j+ k fails to exist at the origin
\/x2+y2+22 \/x2—|—y2+22 \/x2+y2—|—22
(0,0,0).

101. Show that the line normal to the surface zy + z = 2 at the point (1,1, 1) passes through
the origin.
Solution:

Let f(z,y,2)=2y+2—-2=Vf=yi+aj+k

At (1,1,1), we have Vf =i+ j+ k = the normal line is

r=1+t,y=1+t,z=14+t,s0att =—-1=—= 2 =0,y =0,z =0 and the normal line passes
through the origin.

102.

a. Find a vector normal to the surface % — 3> + 22 = 4 at (2, -3, 3).
b. Find equations for the tangent plane and normal line at (2, —3, 3).
Solution:

a. f(z,y,2) =2 —y* +2° =4

— V[ =2xi—2yj+ 2k = at (2,-3,3)

the gradient is = V f = 4i+6j + 6k which is normal to the surface.

b. Tangent plane: 4x + 6y + 6z = 8 or

20 +3y+32=4

Normal line: x =2+ 4t,y = -3+ 6t,2 = 3 4 6t




