ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science **MATH 237 Linear Algebra I**

Final Exam Practice ProblemsC January 7, 2008

13:00-14:50

1. Let *L* and *T* be the linear transformations from \mathbb{R}^3 to \mathbb{R}^2 given by $L(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, x_1 - x_2 + x_3)$ $T(x_1, x_2, x_3) = (x_1 - x_3, x_2 - x_1).$ (a) Compute (-2L + T)(1, -1, 1).

(b) Find a basis for the nullspace and range of L + 3T.

(c) Find the rank of L - T.

2. Show that the linear operators defined on \mathbb{R}^3 are linearly dependent: $T_1(x_1, x_2, x_3) = (x_1 - x_2, -x_1, x_1 + 2x_2 + x_3)$ $T_2(x_1, x_2, x_3) = (-2x_2 + x_3, -2x_1 + x_2, 2x_1 + x_2)$ $T_3(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + x_2 + x_3, -x_1 + x_2 + x_3).$

3. what must be k if the following linear maps from \mathbb{R}^2 to \mathbb{R}^3 are linearly dependent? $T_1(x,y) = (x+y, x-2y, x+ky)$ $T_2(x,y) = (kx+y, x-y, x+y)$ $T_3(x,y) = (x+y, x+ky, x+y).$

4. Find a basis for $\mathcal{L}(\mathbb{R}^3, \mathbb{C})$ by giving the explicit formula $L(x_1, x_2, x_3)$ for each basis element.

5. Use the standard bases to construct the canonical basis for $\mathcal{L}(\mathbb{R}^3, \mathbb{R})$.

6. Let *D* be the differentiation operator and let \mathcal{J} be the integration operator $\mathcal{J}(p) = \int_0^x p(t) dt$ on real polynomial functions. (a) Prove that $-2D + 3\mathcal{J}$ is an injective operator. (b) Find *k* for which $-D + k\mathcal{J}$ is not injective.

7. Find a linear form on \mathbb{R}^3 so that

f(1,0,0) = 3, f(0,1,0) = -1, and f(0,0,1) = 4

8. Show that every linear form on \mathbb{F}^n is of the form $f(x_1, x_2, \dots, x_n) = a_1x_1 + a_2x_2 + \dots + a_nx_n$.

9. Let be a vector space over a field \mathbb{F} and let $L: V \longrightarrow \mathbb{F}^n$ be a linear transformation. Prove that the map $L_1: V \longrightarrow \mathbb{F}$ defined by $L_1(v) =$ the first component of L(v) is a linear form on V.

10. Find a linear form on \mathbb{R}^3 so that f(-1, 1, -2) = 2, f(2, 1, 1) = f(0, 0, 1) = -1.

11. Is there a linear form on \mathbb{C}^3 so that f(i, 1, -1) = i, f(1, 1, 1) = -i, f(3, 2, 0) = 1? If so find one of them.

12. Is there a linear form on \mathbb{C}^3 so that f(i, 1, -1) = i + 1, f(i, -1, 2) = -i - 1, f(0, 0, 1) = 0? If so find one of them.

13. Find a nonzero linear form f on \mathbb{C}^3 which annihilates (1, 1, -1) and (-i, 1, -1), that is to say determine f so that f(1, 1, -1) = f(-i, 1, -1) = 0.

14. Determine all linear forms on \mathbb{R}^2 which annihilate the subspace spanned by (-1, 1).

15. Find the dual basis for the basis $\{(1,1,1), (1,1,0), (1,0,0)\}$ of \mathbb{C}^3 .

16. Find the dual basis for $\{1, x\}$ of the space of polynomials of degree ≤ 1 .

17. Given the set of vectors $v_1 = (0, 1, 1)$, $v_2 = (1, 0, 1)$, $v_3 = (1, 1, 0)$ and the linear forms $f_1 = \frac{1}{2}(-x_1 + x_2 + x_3)$ $f_2 = \frac{1}{2}(x_1 - x_2 + x_3)$ $f_3 = \frac{1}{2}(x_1 + x_2 - x_3)$

Show that $\{v_1, v_2, v_3\}$ is a basis for V and $\{f_1, f_2, f_3\}$ is a basis for V^* .

18. Let

$$f_1(x_1, x_2, x_3) = 2x_1 - x_2 + x_3$$

$$f_2(x_1, x_2, x_3) = x_1 + x_2$$

$$f_3(x_1, x_2, x_3) = x_1$$

be linear forms on \mathbb{R}^3 . Find a basis for \mathbb{R}^3 so that $\{f_1, f_2, f_3\}$ is the dual basis of this basis.

19. Consider the following linear forms on real polynomial functions of degree ≤ 1 :

$$f_1(p) = \int_{-1}^0 p(t) dt, \ f_2(p) = \int_0^1 p(t) dt$$

Prove that $\{f_1, f_2\}$ is a basis for the dual space by exhibiting the basis for polynomials of which it is the dual.

20. Prove that there are no real $n \times n$ matrices A and B such that AB - BA = I.

21. Prove that if $T : M_{n \times n}(\mathbb{R}) \longrightarrow \mathbb{R}$ is a linear form for which T(AB) = T(BA) for all $A, B \in M_{2 \times 2}(\mathbb{R})$ and T(I) = 2, then T is the trace function. Generalize this result to $M_{n \times n}(\mathbb{R})$.

22. Let V be an n-dimensional vector space. Prove that for any basis $\{f_1, f_2, \dots, f_n\}$ of the dual space V^* . There exists a basis $\{v_1, v_2, \dots, v_n\}$ for V such that

$$f_i\left(v_j\right) = \delta_{ij}.$$

23. Let V be a finite dimensional vector space and let v be a nonzero vector in V. a) Prove that there exists $f \in V^*$ such that $f(v) \neq 0$. b) Prove that the map $L_v : V^* \longrightarrow \mathbb{F}$ defined by $L_v(f) = f(v)$ is a linear form on V^* c) Prove that the map $L : V \longrightarrow (V^*)^*$ given by $L(v) = L_v$ is a vector space isomorphism which allows us to view vectors in V as linear forms on V^* .

24. Let V be a finite dimensional vector space and let $\{v_1, v_2, \dots, v_n\}$ and $\{f_1, f_2, \dots, f_n\}$ be bases for V and V^* respectively. Prove that the matrix A defined by

$$A_{ij} = f_i\left(v_j\right)$$

is invertible. Deduce from this fact that each basis \mathcal{B} has a dual \mathcal{B}^* and for each basis \mathcal{B} of V^* there is a basis \mathcal{B} for V such that $\widetilde{\mathcal{B}}$ is the dual of \mathcal{B} .

25. Let V be a vector space of dimension n, and let $\{f_1, f_2, \dots, f_n\}$ be a basis for V^* . Show that the map $T: V \longrightarrow \mathbb{F}^n$ defined by

$$T(v) = (f_1(v), f_2(v), \cdots, f_n(v))$$

is an isomorphism.

26. Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ and $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be linear transformations defined by

$$L(x_1, x_2) = (x_1 + x_2, x_1 - x_2, x_1)$$

$$T(x_1, x_2, x_3) = (-x_1 + x_2, x_1 + x_3).$$

Compute the products LT and TL.

27. Let
$$L : \mathbb{C}^3 \longrightarrow \mathbb{C}^4$$
 and $T : \mathbb{C}^3 \longrightarrow \mathbb{C}^3$ be linear transformations defined by
 $L(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_2 - x_3)$
 $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_3 + x_1).$

Compute each of the following when it is defined: a) LT, b) TL, c) LT + L, d) LT + T, e) L(T + I).

28. Show that the linear transformation $L : \mathbb{R}^4 \longrightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$L(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_1 & x_1 + x_2 \\ x_1 + x_2 + x_3 & x_1 + x_2 + x_4 \end{bmatrix}$$

is invertible. Find its inverse by describing $L^{-1}\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right)$.

29. Show that

$$L(x_1, x_2, x_3, x_4) = (x_1 + x_2 - x_3, 2x_1 + x_2 + x_3, x_1 + x_2 + x_3, x_4)$$

is an invertible linear operator and compute its inverse.

30. Let D be the differentiation operator on differentiable functions. Find $N(D^2 + D)$ and determine a basis for this nullspace

31. Find an operator of the form $L = D^2 + aD + bI$ for which a) $\cos x \in N(L)$ b) $x^2 \in N(L)$ c) $xe^x \in N(L)$.