ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science **MATH 237 Linear Algebra I** Final Exam Practice Problems D January 7, 2008 13:00-14:50

1. Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation for which L(1,0,0) = (-2,-3), L(0,1,0) = (3,2), L(0,0,1) = (1,-1). (a) Find L(1,-1,2).

(b) Find $L(x_1, x_2, x_3)$.

(c) Determine the matrix of L relative to the standard bases \mathbb{R}^3 and \mathbb{R}^2 .

(d) Determine the matrix of L relative to the standard basis for \mathbb{R}^3 and the basis $\{(2,3), (3,2)\}$.

2. Let *L* be the linear operator on the space of polynomials of degree ≤ 3 so that $L(1) = 1 + t, L(t) = t + t^2, L(t^2) = t^2 + t^3, L(t^3) = 1.$ (a) Find $L(2 - t + t^2 - t^3)$. (b) Compute the matrix of *L* relative to the basis $\mathcal{B} = \{1, t, t^2, t^3\}$. (c) Find the matrix of *L* relative to the basis $\mathcal{C} = \{1 + t, t + t^2, t^2 + t^3, 1\}$

(d) Find the matrix of L relative to the pair \mathcal{B},\mathcal{C} .

3. Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}.$ Prove that the mapping given by L(X) = AX - XAis a linear operator on $M_{2\times 2}(\mathbb{R})$. Find its matrix relative to the standard ordered basis for $M_{2\times 2}(\mathbb{R})$.

4. Let V be a finite dimensional vector space with bases $\mathcal{B}, \mathcal{B}'$ and let P, be the \mathcal{B} to \mathcal{B}' change of basis matrix. The operator $I: V \longrightarrow V$ given by I(v) = v for all v in V is called the identity operator. Find the matrix of I

(a) relative to \mathcal{C}

(b) relative to \mathcal{B}'

(c) relative to \mathcal{B} and \mathcal{B}'

(d) relative to \mathcal{B}' and \mathcal{B} .

5. Find the matrix of the projection (of \mathbb{R}^3) on the x_1x_2 -plane relative to the standard basis.

6. Find the matrix of the reflection (of \mathbb{R}^3) with respect to the x_1x_2 -plane relative to the standard ordered basis.

7. Find the matrix of the reflection (of \mathbb{R}^2) with respect to the x_2 -axis relative to the standard ordered basis.

8. Find the matrix of the rotation (of \mathbb{R}^2) through the angle θ relative to the standard ordered basis.

9. Let V be the vector space spanned by the UC-functions $\mathcal{B} = \{1, x, x^2, \cos x, \sin x\}$ a) Is $D = \frac{d}{dx}$ a linear operator on V? If so find its matrix relative to \mathcal{B} . b) Is $\mathcal{J} = \int_0^x$ a linear operator on V? If so find its matrix relative to \mathcal{B} .

10. Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear operator given by

$$L(x_1, x_2, x_3) = x_1 - x_2 - x_3, -x_1 + x_2 - x_3, -x_1 - x_2 + x_3.$$

Find scalars λ and vectors v so that

$$L(v) = \lambda v.$$

Find a basis for \mathbb{R}^3 consisting of v's satisfying this condition and determine the matrix of L relative to this basis.