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1. (20 pts.) Mark each of the following assertions True (T) or False (F). Justify your answer:
give a proof or a counterexample.

a) The function T : R2 −→ R2 defined by T (a1, a2) = (1, a2) is linear.

Solution:
FALSE. Since T (0, 0) = (1, 0) 6= (0, 0), T does not take the zero vector to the zero vector, and
so T cannot be linear.

b) If T : R2 −→ R2 is given by T (a1, a2, a3) = (a1 − a2, 2a3), then rank (T ) = 1.

Solution:
FALSE

span {T (1, 0, 0) , T (0, 1, 0) , T (0, 0, 1)} = span {(1, 0) , (−1, 0) , (0, 2)} = span {(1, 0) , (0, 2)} .

Hence rank (T ) = 2.

c) The function h : R −→ R defined by h (x) = x2 is a linear transformation.

Solution:
FALSE. Since h (1 + 1) = 22 6= h (1) + h (1).

d) There exists a linear transformation T : M3×1 (R) −→M2×1 (R) for which

T

 1
1
1

 =

[
1
1

]
, T

 1
0
1

 =

[
1
2

]
, T

 0
1
0

 =

[
2
3

]
.

Solution:
FALSE The three conditions together violate linearity. Note that the vectors in the two last
equations add up to the vector in the first equation.



2. (15 pts.) Let F be a field.

Define T : M2×2 (F) −→M2×1 (F) by T

([
a b
c d

])
=

[
a
d

]
.

Determine if T is a linear transformation. Give a proof.

Solution:

Let

[
a1 b1

c1 d1

]
,

[
a2 b2

c2 d2

]
∈M2×2 (F), λ ∈ F.

T

(
λ

[
a1 b1

c1 d1

]
+

[
a2 b2

c2 d2

])
= T

([
λa1 + a2 λb1 + b2

λc1 + c2 λd1 + d2

])
=

[
λa1 + a2

λd1 + d2

]

= λ

[
a1

d1

]
+

[
a2

d2

]
= λT

([
a1 b1

c1 d1

])
+ T

([
a2 b2

c2 d2

])
.

Thus T is linear.



3. (21 pts.) Let T : R2 −→ P2 (R) be a linear transformation such that T (−1, 4) = x2− 3 and
T (−2, 9) = x + 1
(a) Find T (7,−2)
(b) Find a vector v = (a1, a2) ∈ R2 for which T (v) = 3x2 − 2x− 11.
(c) Find a polynomial p (x) ∈ P2 (R) but p (x) /∈ R (T ).
Solution:

a)
First note that {(−1, 4) , (−2, 9)} is a basis for R2. Then we find the scalars c1, c2 satisfying
(7,−2) = c1 (−1, 4) + c2 (−2, 9).

This is true if and only if
−c1 − 2c2 = 7
4c1 + 9c2 = −2

, i.e.,
−4c1 − 8c2 = 28
4c1 + 9c2 = −2

=⇒ c1 = −59
c2 = 26

.

Hence
T (7,−2) = (−59) T (−1, 4) + (26) T (−2, 9) = (−59)

(
x2 − 3

)
+ (26) (x + 1)

= −59x2 + 26x + 203.

b)
The vector 3x2 − 2x− 11 ∈ span

({
x2 − 3, x + 1

})
iff 3x2 − 2x− 11 = c1

(
x2 − 3

)
+ c2 (x + 1).

This is possible iff 3x2 − 2x− 11 = c1x
2 + c2x + c2 − 3c1.

Hence c1 = 3, c2 = −2.

Thus v = 3 (−1, 4) + (−2) (−2, 9) = (1,−6).

c)
We want p (x) /∈ span

{
x2 − 3, x + 1

}
.

For this, ax2 + bx + c ∈ span
({

x2 − 3, x + 1
})

iff ax2 + bx + c = λ1

(
x2 − 3

)
+ λ2 (x + 1) ⇐⇒

a = λ1, b = λ2, c = −3λ1 + λ2.

Now let λ1 = λ2 = 1. Then a = b = 1, c = −2.

Now it is easy to check that p (x) = x2+x+1 /∈ span
({

x2 − 3, x + 1
})

, i.e., p (x) = x2+x+1 /∈
R (T ).



4. (20 pts.) Let T : M2×2 (R) −→ P1 (R) be the linear transformation defined by

T

([
a b
c d

])
= (a + d) + (b + c) x.

Consider the following two bases for M2×2 (R) and P1 (R) respectively:

β =

{[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
0 1
1 1

]}
and γ = {1, 1 + x}.

a) Find [T ]γβ

b) Find

[
T

([
3 1
7 5

])]
γ

only by using part a).

Solution:

a)

T

([
1 0
0 1

])
= 2 = c1 + c2 (1 + x) = 2 + 0 (1 + x) ⇐⇒ c1 = 2, c2 = 0.

T

([
1 1
0 0

])
= 1 + x = d1 + d2 (1 + x) = 0 + 1 (1 + x) ⇐⇒ d1 = 0, d2 = 1.

T

([
0 0
1 1

])
= 1 + x = g1 + g2 (1 + x) = 0 + 1 (1 + x) ⇐⇒ g1 = 0, g2 = 1.

T

([
0 1
1 1

])
= 1 + 2x = f1 + f2 (1 + x) = −1 + 2 (1 + x) ⇐⇒ f1 = −1, f2 = 2.

[T ]γβ =

[
2 0 0 −1
0 1 1 2

]
.

b)

T

([
3 1
7 5

])
= (3 + 5) + (1 + 7) x = 8 + 8x = 0 + 8 (1 + x) =⇒

[
T

([
3 1
7 5

])]
γ

=

[
0
8

]

or by using part a), we get[
T

([
3 1
7 5

])]
γ

= [T ]γβ

[[
3 1
7 5

]]
β

=

[
2 0 0 −1
0 1 1 2

]
−2

5
11
−4

 =

[
0
8

]



5. (20 pts.) Consider the linear tansformation T : P3 (R) −→ R2 given by

T (p) = (p′′ (0) , p′ (0))

a) Find a basis for N (T ), compute the nullity of T .
b) Find a basis for R (T ), compute the rank of T
c) Determine whether T is one-to-one or onto.
Solution

a)
Let p (x) = a + bx + cx2 + dx3 ∈ P3 (R).

Then p′ (x) = b + 2cx + 3dx2, p′′ (x) = 2c + 6dx, and so p′ (0) = b, p′′ (0) = 2c.

Thus we see that

p (x) ∈ N (T ) ⇐⇒ (p′′ (0) , p′ (0)) = (0, 0) ⇐⇒ (b, 2c) = (0, 0) ⇐⇒ b = c = 0, and a, d can be
anything.

Therefore p (x) ∈ N (T ) ⇐⇒ p (x) = a + dx3 ∈ span
({

1, x3
})

= N (T ). So {1, x3} is a basis
for N (T ).

b)

We have

R (T ) = span
({

T (x) , T
(
x2

)})
= span ({(0, 1) , (2, 0)}) = R2.

We conclude that {(0, 1) , (2, 0)} is a basis for R (T ). Thus rank (T ) = 2.

c)
Since nullity (T ) = 2 6= 0, T is not one-to-one.

Nevertheless, rank (T ) = 2 = dim
(
R2

)
=⇒ R (T ) = R2 shows that T is onto.



6. (14 pts.) Suppose T : R2 −→ R2 is a linear transformation with N (T ) = R (T ).
(a) Show that T (T (v)) = 0 for all v ∈ R2.
(b) Show that there is a vector v ∈ R2 such that {v, T (v)} is a basis for R2. (Hint: show first
that T (v) 6= 0 for some v ∈ R2.)
(c) Determine [T ]β for the ordered basis β = {v, T (v)} from part (b)

Solution:

(a)
For any v ∈ R2, we have T (v) ∈ R (T ). Since N (T ) = R (T ), we get T (v) ∈ N (T ). Hence
T (T (v)) = 0 and this holds for each v ∈ R2.

(b)
If T (v) = 0 for each v ∈ R2, then N (T ) = R2 and R (T ) = {0}, but this is contrary to the

hypothesis that N (T ) = R (T ). So T (v) 6= 0 for some v ∈ R2. We now consider the subset
{v, T (v)}. This set is not linearly dependent, for if T (v) = cv for some scalar c 6= 0. We apply
T to both sides T (T (v)) = cT (v) and so we get 0 = cT (v) =⇒ T (v) = 0, contradiction. So
T (v) 6= cv for any scalar c. Hence the subset {v, T (v)} must be linearly independent. Since
dim

(
R2

)
= 2, we see that {v, T (v)} is a basis for R2.

(c)
We compute images of each vector in the basis β = {v, T (v)}. Thus T (v) = (0) v + (1) T (v)
and also T (T (v)) = 0 = (0) v + (0) T (v). Thus the matrix that represents T relative to the
basis is β = {v, T (v)}

[T ]β =

[
0 0
1 0

]
.


