

# **ÇANKAYA UNIVERSITY** Department of Mathematics and Computer Science

## MATH 237 Fall 2007 Linear Algebra I

Final Exam January 7, 2008 13:00-14:50

| Surname    | : |  |
|------------|---|--|
|            |   |  |
|            |   |  |
| Department | : |  |
| Section    | : |  |
|            |   |  |
| Signature  |   |  |

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- $\bullet$  Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are  $\underline{not}$  allowed.

# GOOD LUCK!

Please do  $\underline{not}$  write below this line.

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | TOTAL |
|----|----|----|----|----|----|-------|
|    |    |    |    |    |    |       |
|    |    |    |    |    |    |       |
| 20 | 15 | 21 | 20 | 20 | 14 | 110   |

**1.** (20 pts.) Mark each of the following assertions True (T) or False (F). Justify your answer: give a proof or a counterexample.

a) The function  $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  defined by  $T(a_1, a_2) = (1, a_2)$  is linear.

### Solution:

**FALSE.** Since  $T(0,0) = (1,0) \neq (0,0)$ , T does not take the zero vector to the zero vector, and so T cannot be linear.

b) If  $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  is given by  $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$ , then rank (T) = 1.

### Solution: FALSE

 $span\{T(1,0,0), T(0,1,0), T(0,0,1)\} = span\{(1,0), (-1,0), (0,2)\} = span\{(1,0), (0,2)\}.$ 

Hence  $\operatorname{rank}(T) = 2$ .

c) The function  $h: \mathbb{R} \longrightarrow \mathbb{R}$  defined by  $h(x) = x^2$  is a linear transformation.

### Solution:

**FALSE.** Since  $h(1 + 1) = 2^2 \neq h(1) + h(1)$ .

d) There exists a linear transformation  $T: \mathbf{M}_{3 \times 1}(\mathbb{R}) \longrightarrow \mathbf{M}_{2 \times 1}(\mathbb{R})$  for which

$$T\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\1\end{array}\right], T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\2\end{array}\right], T\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right) = \left[\begin{array}{c}2\\3\end{array}\right].$$

### Solution:

**FALSE** The three conditions together violate linearity. Note that the vectors in the two last equations add up to the vector in the first equation.

**2.** (15 pts.) Let  $\mathbb{F}$  be a field.

Define 
$$T: \mathbf{M}_{2 \times 2}(\mathbb{F}) \longrightarrow \mathbf{M}_{2 \times 1}(\mathbb{F})$$
 by  $T\left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a \\ d \end{bmatrix}$ .

Determine if T is a linear transformation. Give a proof.

# Solution:

Let 
$$\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$
,  $\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in \mathbf{M}_{2 \times 2}(\mathbb{F}), \lambda \in \mathbb{F}.$ 

$$T\left(\lambda \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} \lambda a_1 + a_2 & \lambda b_1 + b_2 \\ \lambda c_1 + c_2 & \lambda d_1 + d_2 \end{bmatrix}\right) = \begin{bmatrix} \lambda a_1 + a_2 \\ \lambda d_1 + d_2 \end{bmatrix}$$

$$= \lambda \begin{bmatrix} a_1 \\ d_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ d_2 \end{bmatrix} = \lambda T \left( \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \right) + T \left( \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \right).$$

Thus T is linear.

**3.** (21 pts.) Let  $T: \mathbb{R}^2 \longrightarrow \mathbf{P}_2(\mathbb{R})$  be a linear transformation such that  $T(-1,4) = x^2 - 3$  and T(-2,9) = x+1(a) Find T(7, -2)(b) Find a vector  $v = (a_1, a_2) \in \mathbb{R}^2$  for which  $T(v) = 3x^2 - 2x - 11$ . (c) Find a polynomial  $p(x) \in \mathbf{P}_2(\mathbb{R})$  but  $p(x) \notin R(T)$ . Solution: a) First note that  $\{(-1,4), (-2,9)\}$  is a basis for  $\mathbb{R}^2$ . Then we find the scalars  $c_1, c_2$  satisfying  $(7, -2) = c_1(-1, 4) + c_2(-2, 9).$ This is true if and only if  $\begin{array}{c} -c_1 - 2c_2 = 7\\ 4c_1 + 9c_2 = -2 \end{array}$ , i.e.,  $\begin{array}{c} -4c_1 - 8c_2 = 28\\ 4c_1 + 9c_2 = -2 \end{array} \implies \begin{array}{c} c_1 = -59\\ c_2 = 26 \end{array}$ . Hence  $T(7,-2) = (-59) T(-1,4) + (26) T(-2,9) = (-59) (x^2 - 3) + (26) (x + 1)$  $= -59x^2 + 26x + 203.$ b) The vector  $3x^2 - 2x - 11 \in span(\{x^2 - 3, x + 1\})$  iff  $3x^2 - 2x - 11 = c_1(x^2 - 3) + c_2(x + 1)$ . This is possible iff  $3x^2 - 2x - 11 = c_1x^2 + c_2x + c_2 - 3c_1$ .

Hence  $c_1 = 3, c_2 = -2$ .

Thus v = 3(-1,4) + (-2)(-2,9) = (1,-6).

c)

We want  $p(x) \notin span\{x^2 - 3, x + 1\}$ .

For this,  $ax^2 + bx + c \in span(\{x^2 - 3, x + 1\})$  iff  $ax^2 + bx + c = \lambda_1(x^2 - 3) + \lambda_2(x + 1) \iff a = \lambda_1, b = \lambda_2, c = -3\lambda_1 + \lambda_2.$ 

Now let  $\lambda_1 = \lambda_2 = 1$ . Then a = b = 1, c = -2.

Now it is easy to check that  $p(x) = x^2 + x + 1 \notin span(\{x^2 - 3, x + 1\})$ , i.e.,  $p(x) = x^2 + x + 1 \notin R(T)$ .

4. (20 pts.) Let  $T : \mathbf{M}_{2 \times 2}(\mathbb{R}) \longrightarrow \mathbf{P}_1(\mathbb{R})$  be the linear transformation defined by  $T\left(\left[\begin{array}{cc}a & b\\c & d\end{array}\right]\right) = (a+d) + (b+c) x.$ 

Consider the following two bases for  $\mathbf{M}_{2\times 2}(\mathbb{R})$  and  $\mathbf{P}_{1}(\mathbb{R})$  respectively:

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\} \text{ and } \gamma = \{1, 1+x\}.$$
  
a) Find  $[T]_{\beta}^{\gamma}$ 

b) Find 
$$\begin{bmatrix} T \left( \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \right) \end{bmatrix}_{\gamma}$$
 only by using part a).

### Solution:

a)  

$$T\left(\left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]\right) = 2 = c_{1} + c_{2}\left(1 + x\right) = 2 + 0\left(1 + x\right) \iff c_{1} = 2, c_{2} = 0.$$

$$T\left(\left[\begin{array}{cc}1 & 1\\0 & 0\end{array}\right]\right) = 1 + x = d_{1} + d_{2}\left(1 + x\right) = 0 + 1\left(1 + x\right) \iff d_{1} = 0, d_{2} = 1.$$

$$T\left(\left[\begin{array}{cc}0 & 0\\1 & 1\end{array}\right]\right) = 1 + x = g_{1} + g_{2}\left(1 + x\right) = 0 + 1\left(1 + x\right) \iff g_{1} = 0, g_{2} = 1.$$

$$T\left(\left[\begin{array}{cc}0 & 1\\1 & 1\end{array}\right]\right) = 1 + 2x = f_{1} + f_{2}\left(1 + x\right) = -1 + 2\left(1 + x\right) \iff f_{1} = -1, f_{2} = 2.$$

$$[T]_{\beta}^{\gamma} = \left[\begin{array}{cc}2 & 0 & 0 & -1\\0 & 1 & 1 & 2\end{array}\right].$$
b)

$$T\left(\left[\begin{array}{cc}3&1\\7&5\end{array}\right]\right) = (3+5) + (1+7)x = 8 + 8x = 0 + 8(1+x) \Longrightarrow \left[T\left(\left[\begin{array}{cc}3&1\\7&5\end{array}\right]\right)\right]_{\gamma} = \left[\begin{array}{cc}0\\8\end{array}\right]$$

or by using part a), we get

$$\begin{bmatrix} T\left(\begin{bmatrix}3 & 1\\7 & 5\end{bmatrix}\right)\end{bmatrix}_{\gamma} = \begin{bmatrix}T\end{bmatrix}_{\beta}^{\gamma} \begin{bmatrix}\begin{bmatrix}3 & 1\\7 & 5\end{bmatrix}\end{bmatrix}_{\beta} = \begin{bmatrix}2 & 0 & 0 & -1\\0 & 1 & 1 & 2\end{bmatrix}\begin{bmatrix}-2\\5\\11\\-4\end{bmatrix} = \begin{bmatrix}0\\8\end{bmatrix}$$

**5.** (20 pts.) Consider the linear tansformation  $T: \mathbf{P}_3(\mathbb{R}) \longrightarrow \mathbb{R}^2$  given by

$$T(p) = (p''(0), p'(0))$$

a) Find a basis for N(T), compute the nullity of T.

b) Find a basis for R(T), compute the rank of T

c) Determine whether T is one-to-one or onto.

### Solution

a)  
Let 
$$p(x) = a + bx + cx^2 + dx^3 \in \mathbf{P}_3(\mathbb{R}).$$

Then  $p'(x) = b + 2cx + 3dx^2$ , p''(x) = 2c + 6dx, and so p'(0) = b, p''(0) = 2c.

Thus we see that

 $p(x) \in N(T) \iff (p''(0), p'(0)) = (0, 0) \iff (b, 2c) = (0, 0) \iff b = c = 0$ , and a, d can be anything.

Therefore  $p(x) \in N(T) \iff p(x) = a + dx^3 \in span(\{1, x^3\}) = N(T)$ . So  $\{1, x^3\}$  is a basis for N(T).

#### b)

We have

$$R(T) = span(\{T(x), T(x^{2})\}) = span(\{(0, 1), (2, 0)\}) = \mathbb{R}^{2}.$$

We conclude that  $\{(0, 1), (2, 0)\}$  is a basis for R(T). Thus rank (T) = 2.

#### c)

Since nullity  $(T) = 2 \neq 0$ , T is not one-to-one.

Nevertheless, rank  $(T) = 2 = \dim (\mathbb{R}^2) \Longrightarrow R(T) = \mathbb{R}^2$  shows that T is onto.

**6.** (14 pts.) Suppose  $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  is a linear transformation with N(T) = R(T).

(a) Show that T(T(v)) = 0 for all  $v \in \mathbb{R}^2$ .

(b) Show that there is a vector  $v \in \mathbb{R}^2$  such that  $\{v, T(v)\}$  is a basis for  $\mathbb{R}^2$ . (Hint: show first that  $T(v) \neq 0$  for some  $v \in \mathbb{R}^2$ .)

(c) Determine  $[T]_{\beta}$  for the ordered basis  $\beta = \{v, T(v)\}$  from part (b)

#### Solution:

(a)

For any  $v \in \mathbb{R}^2$ , we have  $T(v) \in R(T)$ . Since N(T) = R(T), we get  $T(v) \in N(T)$ . Hence T(T(v)) = 0 and this holds for each  $v \in \mathbb{R}^2$ .

(b)

If T(v) = 0 for each  $v \in \mathbb{R}^2$ , then  $N(T) = \mathbb{R}^2$  and  $R(T) = \{0\}$ , but this is contrary to the

hypothesis that N(T) = R(T). So  $T(v) \neq 0$  for some  $v \in \mathbb{R}^2$ . We now consider the subset  $\{v, T(v)\}$ . This set is not linearly dependent, for if T(v) = cv for some scalar  $c \neq 0$ . We apply T to both sides T(T(v)) = cT(v) and so we get  $0 = cT(v) \Longrightarrow T(v) = 0$ , contradiction. So  $T(v) \neq cv$  for any scalar c. Hence the subset  $\{v, T(v)\}$  must be linearly independent. Since dim  $(\mathbb{R}^2) = 2$ , we see that  $\{v, T(v)\}$  is a basis for  $\mathbb{R}^2$ .

(c)

We compute images of each vector in the basis  $\beta = \{v, T(v)\}$ . Thus T(v) = (0)v + (1)T(v)and also T(T(v)) = 0 = (0)v + (0)T(v). Thus the matrix that represents T relative to the basis is  $\beta = \{v, T(v)\}$ 

$$[T]_{\beta} = \left[ \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right].$$