

ÇANKAYA UNIVERSITYDepartment of Mathematics and Computer Science

MATH 237 Fall 2007 Linear Algebra I

Final Exam January 7, 2008 13:00-14:50

Surname	:	
ID#	:	
Department	:	
Section	:	
Instructor	:	
Signature	:	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
20	15	21	20	20	14	110

- 1. (20 pts.) Mark each of the following assertions True (T) or False (F). Justify your answer: give a proof or a counterexample.
- a) The function $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $T(a_1, a_2) = (1, a_2)$ is linear.
- b) If $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is given by $T(a_1, a_2, a_3) = (a_1 a_2, 2a_3)$, then rank T(x) = 1. c) The function $h: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $T(x) = x^2$ is a linear transformation.
- d) There exists a linear transformation $T: \mathbf{M}_{3\times 1}(\mathbb{R}) \longrightarrow \mathbf{M}_{2\times 1}(\mathbb{R})$ for which

$$T\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\1\end{array}\right], T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\2\end{array}\right], T\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right) = \left[\begin{array}{c}2\\3\end{array}\right].$$

2. (15 pts.) Let \mathbb{F} be a field.

Define
$$T: \mathbf{M}_{2\times 2}(\mathbb{F}) \longrightarrow \mathbf{M}_{2\times 1}(\mathbb{F})$$
 by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a \\ d \end{bmatrix}$.

Determine if T is a linear transformation. Give a proof..

- **3.** (21 pts.) Let $T: \mathbb{R}^2 \longrightarrow \mathbf{P}_2(\mathbb{R})$ be a linear transformation such that $T(-1,4) = x^2 3$ and T(-2,9) = x + 1
- (a) Find T(7, -2)
- (a) Find T(t, 2)(b) Find a vector $v = (a_1, a_2) \in \mathbb{R}^2$ for which $T(v) = 3x^2 2x 11$. (c) Find a polynomial $p(x) \in \mathbf{P}_2(\mathbb{R})$ but $p(x) \notin R(T)$..

4. (20 pts.) Let $T: \mathbf{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbf{P}_1(\mathbb{R})$ be the linear transformation defined by

$$T\left(\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]\right) = (a+d) + (b+c)x.$$

Consider the following two bases for $\mathbf{M}_{2\times2}\left(\mathbb{R}\right)$ and $\mathbf{P}_{1}\left(\mathbb{R}\right)$ respectively:

$$\beta = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] \right\} \text{ and } \gamma = \{1, 1+x\}.$$

- a) Find $[T]^{\gamma}_{\beta}$
- b) Find $\left[T\left(\left[\begin{array}{cc} 3 & 1 \\ 7 & 5 \end{array}\right]\right)\right]_{\gamma}$ only by using part a)..

5. (20 pts.) Consider the linear tansformation $T: \mathbf{P}_3(\mathbb{R}) \longrightarrow \mathbb{R}^2$ given by

$$T\left(p\right) = \left(p''\left(0\right), p'\left(0\right)\right)$$

- a) Find a basis for $N\left(T\right)$, compute the nullity of T.
- b) Find a basis for R(T), compute the rank of T
- c) Determine whether T is one-to-one or onto.

- **6.** (14 pts.) Suppose $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation with N(T) = R(T). (a) Show that T(T(v)) = 0 for all $v \in \mathbb{R}^2$. (b) Show that there is a vector $v \in \mathbb{R}^2$ such that $\{v, T(v)\}$ is a basis for \mathbb{R}^2 . (Hint: show first that $T(v) \neq 0$ for some $v \in \mathbb{R}^2$.) (c) Determine $[T]_{\beta}$ for the ordered basis $\beta = \{v, T(v)\}$ from part (b).