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1. Given the system S of linear equations

x1 + 2x2 + ax3 + 2x4 = 1
x1 + 3x3 + 4x4 = b

2x1 + x2 + (a + b) x3 + 7x4 = 2

i) Find the value(s) of a and b so that the system has
a) no solution;
b) a unique solution;
c) infinitely many solutions.

ii) Find all solutions in the case a = 7, b = 1.

Solution:

(i)

 1 2 a 2 1
1 0 3 4 b
2 1 a + b 7 2

 −→
 1 2 a 2 1

0 −2 3− a 2 b− 1
0 −3 −a + b 3 0

 −→
 1 2 a 2 1

0 1 3− b −1 b− 1
0 −3 −a + b 3 0



−→

 1 2 a 2 1
0 1 3− b −1 b− 1
0 0 9− a− 2b 0 3b− 3


This last matrix has no bad row iff 9− a− 2b = 0 and 3b− 3 = 0, i.e., if a = 7, b = 1.

a) The system has no solution if 9− a− 2b = 0 and b 6= 1.

b) The system has infinitely many solutions if a = 7 and b 6= 1.

c) There are no values of a and b that yields unique solution.

(ii) 1 2 7 2 1
0 1 3− 1 −1 1− 1
0 0 9− 7− 2 0 3 (1)− 3

 −→
 1 2 7 2 1

0 1 2 −1 0
0 0 0 0 0

 −→
 1 0 3 4 1

0 1 2 −1 0
0 0 0 0 0


x1 +3u1 +4u2 = 1

x2 +2u1 −u2 = 0
x1 = 1− 3u1 − 4u2

x2 = −2u1 + u2

A =


x1

x2

x3

x4

 =


1− 3u1 − 4u2

−2u1 + u2x3

u1

u2

 =


1
0
0
0

 + u1


−3
−2
1
0

 + u2


−4
1
0
1

 where u1, u2 ∈ R



2.
a) Compute the following product

[
1 2 3 4 5

−5 −4 −3 −2 −1

]
1 0
1 1
1 2
1 3
1 4


No explanation is necessary.

b) Let U be the matrix below. Find all solutions to the homogeneous system Ux = 0.

U =

 1 1 1 −2 0
0 0 1 7 5
0 0 0 0 7

.

Solution:

a)

[
1 2 3 4 5

−5 −4 −3 −2 −1

] 
1 0
1 1
1 2
1 3
1 4

 =

[
1 + 2 + 3 + 4 + 5 0 + 2 + 6 + 12 + 20
−5− 4− 3− 2− 1 0− 4− 6− 6− 4

]
=

[
15 40
−15 −20

]
.

b)

U =

 1 1 1 −2 0
0 0 1 7 5
0 0 0 0 7

 −→
 1 1 0 −9 −5

0 0 1 7 5
0 0 0 0 7

 −→
 1 1 0 −9 0

0 0 1 7 0
0 0 0 0 1


x1 + u1 − 9u2 = 0

x3 + 7u2 = 0
x5 = 0

=⇒
x1 = −u1 + 9u2

x3 = −7u2

x5 = 0

Thus all solutions are of the form


x1

x2

x3

x4

x5

 =


−u1 + 9u2

u1

−7u2

u2

0

 = u1


−1
1
0
0
0

 + u2


9
0
−7
1
0

 where u1, u2 ∈ R



3. Compute the determinant

det


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

.

Note. You must show your work to receive credit for this problem.

Solution:

det


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 = −

∣∣∣∣∣∣∣∣
−1 2 −1 0

2 −1 0 0
0 −1 2 −1
0 0 −1 2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
−1 2 −1 0

0 3 −3 0
0 −1 2 −1
0 0 −1 2

∣∣∣∣∣∣∣∣

= (−1) (−1)

∣∣∣∣∣∣∣∣
−1 2 −1 0

0 −1 2 −1
0 3 −3 0
0 0 −1 2

∣∣∣∣∣∣∣∣ = (−1) (−1)

∣∣∣∣∣∣∣∣
−1 2 −1 0

0 −1 2 −1
0 0 3 −3
0 0 −1 2

∣∣∣∣∣∣∣∣

= (−1) (−1) (−1)

∣∣∣∣∣∣∣∣
−1 2 −1 0

0 −1 2 −1
0 0 −1 2
0 0 3 −3

∣∣∣∣∣∣∣∣

= (−1) (−1) (−1)

∣∣∣∣∣∣∣∣
−1 2 −1 0

0 −1 2 −1
0 0 −1 2
0 0 0 3

∣∣∣∣∣∣∣∣ = (−1) (−1) (−1) (−1) (−1) (−1) 3 = 3.



4. Let A =

 1 2 3
1 5 6
2 6 c

.

a) Find the number c that makes this matrix not invertible.
b) If c = 20 factor the matrix into A = LU (lower triangular L and upper triangular U).
c) If B2 = 0, the zero matrix, explain why B is not invertible.

Solution:

a)

A =

 1 2 3
1 5 6
2 6 c

 −→
 1 2 3

0 3 3
0 2 c− 6

 −→
 1 2 3

0 1 1
0 2 c− 6

 −→
 1 2 3

0 1 1
0 0 c− 8


Hence if c = 10, then the matrix A is not invertible.

b) Using our multipliers from our elimination

A =

 1 2 3
1 5 6
2 6 20

 =

 1 0 0
1 1 0
2 2/3 1

 1 2 3
0 3 3
0 0 12


c) If B were invertible with inverse B−1, then B−1B2 = B−10, this would imply that B = 0, itself
the zero matrix. But the zero matrix cannot be invertible.



5. Let

A =

 2 1 −4 11
1 −2 −7 3

−3 1 11 −14

 and B =

 3 −2 −13 13
1 4 5 9

−7 9 39 −26

.

a) Show that A and B have the same row reduced echelon form R.
b) Find invertible matrices P1 and P2 such that R = P1A and R = P2B.
c) Find an invertible matrix P such that A = PB.

Solution:

a)
[

A I
]

=

 2 1 −4 11
1 −2 −7 3

−3 1 11 −14

1 0 0
0 1 0
0 0 1

 −→
 1 −2 −7 3

2 1 −4 11
−3 1 11 −14

0 1 0
1 0 0
0 0 1



−→

 1 −2 −7 3
0 5 10 5
0 −5 −10 −5

0 1 0
1 −2 0
0 3 1

 −→
 1 −2 −7 3

0 5 10 5
0 0 0 0

0 1 0
1 −2 0
1 1 1



−→

 1 −2 −7 3
0 1 2 1
0 0 0 0

0 1 0
1
5

−2
5

0
1 1 1

 −→
 1 0 −3 5

0 1 2 1
0 0 0 0

2
5

1
5

0
1
5

−2
5

0
1 1 1

 = R so P1 =

 2
5

1
5

0
1
5

−2
5

0
1 1 1



[
B I

]
=

 3 −2 −13 13
1 4 5 9

−7 9 39 −26

1 0 0
0 1 0
0 0 1

 −→
 1 4 5 9

3 −2 −13 13
−7 9 39 −26

0 1 0
1 0 0
0 0 1



−→

 1 4 5 9
0 −14 −28 −14
0 37 74 37

0 1 0
1 −3 0
0 7 1



−→

 1 4 5 9
0 1 2 1
0 1 2 1

0 1 0
−1
14

3
14

0
0 7

37
1
37

 −→
 1 0 −3 5

0 1 2 1
0 0 0 0

4
14

1− 12
14

0
−1
14

3
14

0
1
14

7
37
− 3

14
1
37



so P2 =

 2
7

1
7

0
− 1

14
3
14

0
1
14

− 13
518

1
37


Hence A and B have the same row reduced echelon form R. Also A = P1R and B = P2R. Thus,
R = P−1

1 A and R = P−1
2 B which gives P−1

1 A = P−1
2 B. This implies that A = P1P

−1
2 B. Therefore

we let P = P1P
−1
2 .



6. (Bonus) Suppose the matrix A has row reduced echelon form R:

A =

 1 2 1 b
2 a 1 8

row 3

, R =

 1 2 0 3
0 0 1 2
0 0 0 0


a) What can you say about row 3 of A?
b) What are the numbers a and b?

Solution:

a) Because row 3 of R is all zeros, row 3 of A must be a linear combination of rows 1 and 2 of A.
The three rows of A are linearly dependent.

b) After one step of elimination we have

 1 2 1 b
0 a− 4 −1 8− 2b

row 3


Looking at R we see that the second column of A is not a basic column, so a = 4. Continuing with
elimination, we get to

 1 2 0 8− b
0 0 1 2b− 8
0 0 0 0


Comparing this to R we see that b = 5.


