
ÇANKAYA UNIVERSITY
Department of Mathematics and Computer Science

MATH 237
Linear Algebra I

2nd Midterm

SOLUTIONS
December 18, 2007

17:40-19:15

Surname :
Name :
ID # :

Department :
Section :

Instructor :
Signature :

• The exam consists of 6 questions.
• Please read the questions carefully and write your answers under the corresponding
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• Show all your work. Correct answers without sufficient explanation might not get full
credit.
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1. Are the following sets in R3 vector subspaces? Give reasons.

(a)







x
y
z


 ∈ R3 : 2x− 2y + z = 0



 YES NO

It is given by a linear equation equal to 0.You can also think about it as the nullspace of the

matrix
[
2 −2 1

]
.

(b)







x
y
z


 ∈ R3 : x2 − y2 + z = 0



 YES NO

The vector




1
0

−1


 is in the set, but if you multiply by −1



−1
0
1


 is not.

(c)







x
y
z


 ∈ R3 : 2x− 2y + z = 1



 YES NO

It is given by a linear equation not set equal to 0. In particular, it doesn’t contain the 0 vector.

(d)







x
y
z


 ∈ R3 : x = y AND x = 2z



 YES NO

We can think about it as the nullspace of the matrix

[
1 −1 0
1 0 −2

]

(e)







x
y
z


 ∈ R3 : x = y OR x = 2z



 YES NO

Take for example



1
1
0


+



2
0
1


 =



3
1
1


 which is not in the set.



2. Find k if α =
(
k, 2k + 1, 3k − 1, k2 + 3k − 9

)
∈ R4 is in the following subspace of R4

span {(1, 1, 1, 1) , (−1,−1,−2,−1) , (1, 2, 3, 2) , (1, 0, 4, 2)} .

Solution: α =
(
k, 2k + 1, 3k − 1, k2 + 3k − 9

)
∈ span {(1, 1, 1, 1) , (−1,−1,−2,−1) , (1, 2, 3, 2) , (1, 0,

if and only if

α =
(
k, 2k + 1, 3k − 1, k2 + 3k − 9

)
= d1 (1, 1, 1, 1) + d2 (−1,−1,−2,−1) + d3 (1, 2, 3, 2) +

d4 (1, 0, 4, 2) for some scalars d1, d2, d3, d4.

This is possible iff

d1 − d2 + d3 + d4 = k

d1 − d2 + 2d3 + 0d4 = 2k + 1

d1 − 2d2 + 3d3 + 4d4 = 3k − 1

d1 − d2 + 2d3 + 2d4 = k2 + 3k − 9.

We form the following augmented matrix and reduce it to an echelon matrix

Ã =




1 −1 1 1 k
1 −1 2 0 2k + 1
1 −2 3 4 3k − 1
1 −1 2 2 k2 + 3k − 9


 −→




1 −1 1 1 k
0 0 1 −1 k + 1
0 −1 2 3 2k − 1
0 0 1 1 k2 + 2k − 9




−→




1 −1 1 1 k
0 −1 2 3 2k − 1
0 0 1 −1 k + 1
0 0 1 1 k2 + 2k − 9


 −→




1 −1 1 1 k
0 −1 2 3 2k − 1
0 0 1 −1 k + 1
0 0 0 2 k2 + k − 10




d4 =
1

2

(
k2 + k − 10

)
, d3 = k + 1 +

1

2

(
k2 + k − 10

)
=
1

2

(
k2 + 3k − 8

)
,

d2 = 2k − 1− 2

(
1

2

(
k2 + 3k − 8

))
− 3

(
1

2

(
k2 + k − 10

))
=
1

2

(
−5k2 − 5k + 44

)

This last matrix has no bad row and so the above linear system is consistent for all values of
k ∈ R. So the vector α lies in span {(1, 1, 1, 1) , (−1,−1,−2,−1) , (1, 2, 3, 2) , (1, 0, 4, 2)} for all
values of k.



3. Find the dimension of the vector space of polynomials generated by
{
x+ x2, x− x2 + x3, 2− x− x3, x+ 1

}
.

Solution: First
{
x+ x2, x− x2 + x3

}
is linearly independent.

Next

2− x− x3 /∈ span
{
x+ x2, x− x2 + x3

}

and this shows that

{
x+ x2, x− x2 + x3, 2− x− x3

}
is linearly independent.

We now check whether or not x+ 1 ∈ span
{
x+ x2, x− x2 + x3, 2− x− x3

}
.

This is true iff there are scalars c1, c2, c3 such that

x+ 1 = c1
(
x+ x2

)
+ c2

(
x− x2 + x3

)
+ c3

(
2− x− x3

)
which in turn implies that

x + 1 = c1x + c1x
2 + c2 x − c2x

2 + c2x
3 + c32 − c3x − c3x

3 = (c2 − c3) x
3 + (c1 − c2) x

2 +
(c1 + c2 − c3) x+ 2c3

c2 − c3 = 0, c1 − c2 = 0, c1 + c2 − c3 = 1, 2c3 = 1

but this system is inconsistent, and so

x+ 1 /∈ span
{
x+ x2, x− x2 + x3, 2− x− x3

}
.

This shows that the generating set
{
x+ x2, x− x2 + x3, 2− x− x3, x+ 1

}
.

is itself linearly independent and hence is a basis. Therefore the dimension is 4.



4. Consider the matrix

A =




1 2 −1 0 0
1 2 0 2 2
1 2 −1 0 0
2 4 0 4 4


.

(a) Find a basis for the row space of A.
(b) Find a basis for the nullspace N(A).
(b) Find a basis for the column space C(A).

Solution:

A =




1 2 −1 0 0
1 2 0 2 2
1 2 −1 0 0
2 4 0 4 4


 −→




1 2 −1 0 0
0 0 1 2 2
0 0 0 0 0
0 0 2 4 4


 −→




1 2 −1 0 0
0 0 1 2 2
0 0 0 0 0
0 0 0 0 0


 −→




1 2 0 2 2
0 0 1 2 2
0 0 0 0 0
0 0 0 0 0




(a) A basis for the row space is
{[
1 2 0 2 2

]
,
[
0 0 1 2 2

]}
, i.e., rank (A) = 2.

(b) A basis for the column space is








1
1
1
2


 ,




−1
0

−1
0








(c) A vector




x
y
z
t
u



is in the nullspace N (A) if and only if




x
y
z
t
u



=




x = −2y − 2t− 2u
y

z = −2t− 2u
t
u



= y




−2
1
0
0
0



+ t




−2
0

−1
1
0



+ u




−2
0

−2
0
1




Hence a basis for N (A) is








−2
1
0
0
0



,




−2
0

−1
1
0



,




−2
0

−2
0
1








.



5. Complete the set

S =

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

}

to a basis of M2×2 (R).

Solution: First we ask if

[
1 0
0 0

]
∈ span

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

}
?, i.e., are there scalars

c1, c2 such that
[
1 0
0 0

]
= c1

[
−1 1
1 1

]
+ c2

[
1 0
0 1

]
.

This is equivalent to the system 1 = −c1 + c2, 0 = c1, 0 = c1, 0 = c1 + c2, but this system is
inconsistent, and this implies that

[
1 0
0 0

]
/∈ span

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

}
.

Hence S ∪

{[
1 0
0 0

]}
=

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]}
is linearly independent.

We need one more vector.

We now ask if

[
0 1
0 0

]
∈ span

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]}
? , i.e., are there scalars

d1, d2, d3 such that

[
0 1
0 0

]
= d1

[
−1 1
1 1

]
+ d2

[
1 0
0 1

]
+ d3

[
1 0
0 0

]
.

This is equivalent to the system 0 = −d1 + d2 + d3, 1 = d1, 0 = d1, 0 = d1 + d2, but this system
is inconsistent too.

Hence we conclude that

[
0 1
0 0

]
/∈ span

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]}
.

Thus the set S ∪

{[
1 0
0 0

]
,

[
0 1
0 0

]}
=

{[
−1 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]}
is a

linearly

independent set having exactly 4 vectors. Since dim (M2×2 (R)) = 4, we see that this last subset
{[

−1 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]}
⊃ S is a basis containing the given set S.



6. Find a basis and the dimension for the solution space of the system

2x− y + 3z + t = 0

−5x+ y + 4z − t = 0

−x− y + 10z + t = 0.

Solution:

A =




2 −1 3 1
−5 1 4 −1
−1 −1 10 1


 −→




2 −1 3 1
−1 −1 10 1
−1 −1 10 1


 −→




0 −3 23 3
−1 −1 10 1
0 0 0 0




−→



1 1 −10 −1
0 1 −23/3 −1
0 0 0 0


 −→



1 0 7/3 0
0 1 −23/3 −1
0 0 0 0




so




x
y
z
t


 =




−7

3
s

23

3
s+ t
s
t


 = s




−7

3
23

3

1
0


+ t




0
1
0
1




thus a basis for the space of solutions is








−7
23
3
0


 ,




0
1
0
1








and its dimension is 2.


