ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science

MATH 351 Complex Analysis I Final Exam SOLUTIONS

August 8, 2008 9:00-11:00

Surname	:	
Name	:	
ID $\#$:	
Department	•	
Section		
Instructor	•	
Signaturo	•	
Signature	•	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
14	16	16	24	20	15	105

1.
a) Express
$$2e^{i\pi/4}$$
 in the standard form $a + ib$.
b) Express $\left(\frac{1-i}{\sqrt{3}+i}\right)^8$ in polar form $re^{i\theta}$.
Solution:
a)
 $2e^{i\pi/4} = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) = 2\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = \sqrt{2} + i\sqrt{2}$.
b)
 $\left(\frac{1-i}{\sqrt{3}+i}\right)^8 = \left(\frac{\sqrt{2}e^{-i\pi/4}}{2e^{i\pi/6}}\right)^8 = \left(\frac{1}{\sqrt{2}}\right)^8 \left(e^{-i5\pi/12}\right)^8 = \frac{1}{16}e^{-i10\pi/3} = \frac{1}{16}e^{i2\pi/3}$.

a) For what values of x, y is the function f(x + iy) = xy + ix is differentiable? analytic? b) Find a function analytic in the entire plane whose real part is $u(x, y) = x^3y - xy^3$. Solution:

a)

2.

$$u_x = y, \quad u_y = x$$
$$v_x = 1, \quad v_y = 0$$

Thus, by Cauchy-Riemann equations, if f is differentiable at x + iy, then x = -1, y = 0. Since all partial derivatives are continuous, f is indeed *differentiable* at x = -1, y = 0. Since f is not differentiable in a neighborhood of this point, f is *nowhere* analytic.

b) Find harmonic conjugate v of u: Since $v_y = u_x = 3x^2y - y^3$,

$$v = \int (3x^2y - y^3) dy = (3/2) x^2y^2 - y^4/4 + h(x),$$

where h(x) can be determined from the equations:

$$v_x = 3xy^2 + h'(x), \quad v_x = -u_y = -x^3 + 3xy^2$$

thus, $h'(x) = -x^3$ and so $h(x) = -x^4/4 + C$, where C is a constant. It follows that

$$v = (3/2) x^2 y^2 - y^4/4 - x^4/4 + C,$$

is a harmonic conjugate for u and that $f(x, y) = u + iv = (x^3y - xy^3) + i((3/2)x^2y^2 - y^4/4 - x^4/4 + C)$ is an analytic function whose real part is $u(x, y) = x^3y - xy^3$.

3.

a) Let C be the unit circle traversed clockwise. Find the value of $\int_C z \sin z^2 dz$ without explicitly calculating the integral.

b) Let C be the circle of radius 1 centered at 2 + i traversed counterclockwise. Find the value of $\int_C \frac{1}{z} dz$ without explicitly calculating the integral.

Solution:

a) We know that $f(z) = z \sin z^2$ is everywhere analytic so in particular, inside and on C, therefore by Cauchy-Goursat theorem, $\int_C z \sin z^2 = 0$.

b) The function $f(z) = \frac{1}{z}$ has one isolated singular point namely, z = 0, and it is analytic everywhere else, but z = 0 is outside the contour C, therefore by Cauchy-Goursat theorem, $\int_C \frac{1}{z} dz = 0$.

4. Evaluate the following integrals:

(a) $\int_{|z-1|=1} \frac{z}{z^2-1} dz$, (b) $\int_{|z|=2}^{C} \frac{ze^z}{(z-1)^3} dz$, (c) $\int_{|z|=1} \frac{z\sin z}{(z-2)^3} dz$ Solution: a) Let $f(z) = \frac{z}{z+1}$. Then f(z) is analytic inside and on C. Therefore, by the Cauchy Integral Formula, we have $\int_{|z-1|=1} \frac{z}{z^2-1} dz = \int_{|z-1|=1} \frac{f(z)}{z-1} dz = 2\pi i f(1) = 2\pi i \left[\frac{z}{z+1}\right]_{z=1} = 2\pi i \frac{1}{1+1} = \pi i$. b) Let $g(z) = ze^z$. Then g(z) is analytic inside and on C. Hence, by the Cauchy Integral Formula, we have $\int_{|z|=2} \frac{ze^z}{(z-1)^3} dz = \frac{2\pi i}{2!} g''(1) = \pi i [2e^z + ze^z]_{z=1} = \pi i [2e^1 + e^1] = 3\pi i e$. c) $\int_{|z|=1} \frac{z\sin z}{(z-2)^3} dz = 0$, by the Cauchy-Goursat theorem since the integrand $\frac{z\sin z}{(z-2)^3}$ is analytic at all points in the interior and on C. 5. Evaluate the following contour integrals

a) $\int_C (z+z^2) dz$ where C is the straight line segment from z = 1 to z = i. b) $\int_C \sqrt{z} dz$ where C is the segment of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ from z = 3 to z = 2i. (use the principal branch of \sqrt{z}). Solution: a) $f(z) = z + z^2$ has antiderivative $F(z) = \frac{1}{2}z^2 + \frac{1}{3}z^3$ in \mathbb{C} . Therefore, $\int_C f(z) dz = \left[\frac{1}{2}z^2 + \frac{1}{3}z^3\right]_1^i = -\frac{1}{2} - \frac{i}{3} - \left(\frac{1}{2} + \frac{1}{3}\right) = -\frac{4}{3} - \frac{i}{3}$.

b)

 $f(z) = \sqrt{z}$ (principal branch) has antiderivative $F(z) = \frac{2}{3}z^{3/2}$ (principal branch). Therefore,

$$\int_{C} f(z) dz = \left[\frac{2}{3}z^{3/2}\right]_{3}^{2i} = \frac{2}{3}\left((2i)^{3/2} - 3^{3/2}\right)$$
$$= \frac{2}{3}\left(2^{3/2}e^{i3\pi/4} - 3^{3/2}\right)$$
$$= -\frac{4}{3} - 2\sqrt{3} + \frac{4}{3}i$$

6. Find the Taylor series representation for $f(z) = \frac{z^2}{(2+z)^2}$, indicate its domain of convergence.

Solution: $f(z) = \frac{z^2}{(2+z)^2};$ We start with

$$\frac{1}{2+z} = \frac{1}{2} \frac{1}{1-\left(-\frac{z}{2}\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{z}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^n \text{ for } \left|\frac{z}{2}\right| < 1 \text{ i.e., for } |z| < 2.$$

Next we differentiate:

$$\frac{d}{dz}\left(\frac{1}{2+z}\right) = \frac{d}{dz}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^n\right), \text{ for } |z| < 2$$

$$-\frac{1}{(2+z)^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{n+1}} n z^{n-1}, \text{ for } |z| < 2$$

$$-\frac{1}{(2+z)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+2}} (n+1) z^n, \text{ for } |z| < 2$$

$$\frac{1}{(2+z)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+2}} (n+1) z^n, \text{ for } |z| < 2$$

$$\frac{z^2}{(2+z)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+2}} (n+1) z^{n+2}, \text{ for } |z| < 2$$