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• The exam consists of 6 questions.
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1.

a) Express 2eiπ/4 in the standard form a+ ib.

b) Express

(
1− i√
3 + i

)8
in polar form reiθ.

Solution:

a)

2eiπ/4 = 2
(
cos
(π
4

)
+ i sin

(π
4

))
= 2

(
1√
2
+ i

1√
2

)
=
√
2 + i

√
2.

b)
(
1− i√
3 + i

)8
=

(√
2e−iπ/4

2eiπ/6

)8
=

(
1√
2

)8 (
e−i5π/12

)8
=
1

16
e−i10π/3 =

1

16
ei2π/3.



2.

a) For what values of x, y is the function f (x+ iy) = xy + ix is differentiable? analytic?
b) Find a function analytic in the entire plane whose real part is u (x, y) = x3y − xy3.
Solution:

a)

ux = y, uy = x

vx = 1, vy = 0

Thus, by Cauchy-Riemann equations, if f is differentiable at x+ iy, then x = −1, y = 0. Since
all partial derivatives are continuous, f is indeed differentiable at x = −1, y = 0.
Since f is not differentiable in a neighborhood of this point, f is nowhere analytic.

b) Find harmonic conjugate v of u:
Since vy = ux = 3x

2y − y3,

v =

∫ (
3x2y − y3

)
dy = (3/2)x2y2 − y4/4 + h (x) ,

where h (x) can be determined from the equations:

vx = 3xy
2 + h′ (x) , vx = −uy = −x3 + 3xy2

thus, h′ (x) = −x3 and so h (x) = −x4/4 + C, where C is a constant.
It follows that

v = (3/2)x2y2 − y4/4− x4/4 + C,
is a harmonic conjugate for u and that f (x, y) = u+iv =

(
x3y − xy3

)
+i
(
(3/2) x2y2 − y4/4− x4/4 + C

)

is an analytic function whose real part is u (x, y) = x3y − xy3.



3.

a) Let C be the unit circle traversed clockwise. Find the value of

∫

C

z sin z2 dz without explicitly

calculating the integral.
b) Let C be the circle of radius 1 centered at 2 + i traversed counterclockwise. Find the value

of

∫

C

1

z
dz without explicitly calculating the integral.

Solution:

a) We know that f (z) = z sin z2 is everywhere analytic so in particular, inside and on C,

therefore by Cauchy-Goursat theorem,

∫

C

z sin z2 = 0.

b) The function f (z) =
1

z
has one isolated singular point namely, z = 0, and it is analytic

everywhere else, but z = 0 is outside the contour C, therefore by Cauchy-Goursat theorem,∫

C

1

z
dz = 0.



4. Evaluate the following integrals:

(a)

∫

|z−1|=1

z

z2 − 1 dz, (b)

∫

|z|=2

zez

(z − 1)3
dz, (c)

∫

|z|=1

z sin z

(z − 2)3
dz

Solution:

a) Let f (z) =
z

z + 1
. Then f (z) is analytic inside and on C. Therefore, by the Cauchy

Integral Formula, we have

∫

|z−1|=1

z

z2 − 1 dz =
∫

|z−1|=1

f (z)

z − 1 dz = 2πif (1) = 2πi
[
z

z + 1

]

z=1

=

2πi
1

1 + 1
= πi.

b) Let g (z) = zez. Then g (z) is analytic inside and on C. Hence, by the Cauchy Integral

Formula, we have

∫

|z|=2

zez

(z − 1)3
dz =

2πi

2!
g′′ (1) = πi [2ez + zez]z=1 = πi

[
2e1 + e1

]
= 3πie.

c)

∫

|z|=1

z sin z

(z − 2)3
dz = 0, by the Cauchy-Goursat theorem since the integrand

z sin z

(z − 2)3
is

analytic at all points in the interior and on C.



5. Evaluate the following contour integrals

a)

∫

C

(
z + z2

)
dz where C is the straight line segment from z = 1 to z = i.

b)

∫

C

√
z dz where C is the segment of the ellipse

x2

9
+
y2

4
= 1 from z = 3 to z = 2i. (use the

principal branch of
√
z).

Solution:

a)

f (z) = z + z2 has antiderivative F (z) =
1

2
z2 +

1

3
z3 in C. Therefore,

∫

C

f (z) dz =

[
1

2
z2 +

1

3
z3
]i

1

= −1
2
− i

3
−
(
1

2
+
1

3

)
= −4

3
− i

3
.

b)

f (z) =
√
z (principal branch) has antiderivative F (z) =

2

3
z3/2 (principal branch).

Therefore,
∫

C

f (z) dz =

[
2

3
z3/2

]2i

3

=
2

3

(
(2i)3/2 − 33/2

)

=
2

3

(
23/2ei3π/4 − 33/2

)

= −4
3
− 2
√
3 +

4

3
i



6. Find the Taylor series representation for f (z) =
z2

(2 + z)2
, indicate its domain of convergence.

Solution:

f (z) =
z2

(2 + z)2
;

We start with

1

2 + z
=
1

2

1

1−
(
− z
2

) =
1

2

∞∑

n=0

(
−z
2

)n
=

∞∑

n=0

(−1)n
2n+1

zn for
∣∣∣
z

2

∣∣∣ < 1 i.e., for |z| < 2.

Next we differentiate:

d

dz

(
1

2 + z

)
=

d

dz

(
∞∑

n=0

(−1)n
2n+1

zn

)

, for |z| < 2

− 1

(2 + z)2
=

∞∑

n=1

(−1)n
2n+1

nzn−1, for |z| < 2

− 1

(2 + z)2
=

∞∑

n=0

(−1)n+1
2n+2

(n+ 1) zn, for |z| < 2

1

(2 + z)2
=

∞∑

n=0

(−1)n
2n+2

(n+ 1) zn, for |z| < 2

z2

(2 + z)2
=

∞∑

n=0

(−1)n
2n+2

(n+ 1) zn+2, for |z| < 2


