ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science

MATH 351 Complex Analysis I

First Midterm SOLUTIONS July 14, 2008 9:00-10:30

Surname	:	
Name	:	
ID #	:	
Department	•	
Section	•	
Instructor	•	
	•	
Signature	:	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do <u>not</u> write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
11	18	20	20	16	20	105

1. Find all complex numbers z that are complex conjugates of their own squares i.e., $\overline{z} = z^2$. Solution:

We need to solve the equation $\overline{z} = z^2$; that is, we need to find all pairs (x, y) of real numbers such that $x - iy = x^2 - y^2 + i \cdot 2xy$. Since 1 and *i* are linearly independent, this means we need to solve the two equations

$$\begin{array}{rcl} x & = & x^2 - y^2 \\ -y & = & 2xy \end{array}$$

for x and y. For y = 0, we get x = 0 or x = 1. For $y \neq 0$, we get $x = -\frac{1}{2}$ and $y = \pm \frac{1}{2}$. So there are four solutions, namely, $0, 1, -\frac{1}{2} + i\frac{1}{2}, \frac{1}{2} - i\frac{1}{2}$.

2. Find all of the roots of $(-8i)^{1/3}$ in the form a + ib and point out which is the principal root.

Solution: Since $-8i = 8 \exp\left[i\left(-\frac{\pi}{2} + 2k\pi\right)\right]$ (k = 0, 1, 2), the three cube roots of the number $z_0 = -8i$ $(ki)^{1/3} = 2 \exp \left[i \left(\pi + 2k\pi \right) \right]$ •

$$(-8i)^{1/3} = 2 \exp\left[i\left(-\frac{\pi}{6} + \frac{2\pi\pi}{3}\right)\right] \qquad (k = 0, 1, 2)$$

the principal one being

$$c_0 = 2 \exp\left(i\frac{-\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} - i\frac{1}{2} = \sqrt{3} - i\right).$$

The others are

$$c_1 = 2\exp\left(i\frac{\pi}{2}\right) = 2i$$

and

$$c_2 = 2 \exp\left(i\frac{7\pi}{6}\right) = 2\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = -\left(\sqrt{3} + 1\right).$$

3. Determine where f'(z) exists and find its value when

(a)
$$f(z) = \frac{1}{z}$$
;
(b) $f(z) = x^2 + iy^2$.
Solution:
(a)
 $f(z) = \frac{1}{z} = \frac{1}{z} \cdot \frac{\overline{z}}{\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}$. So
 $u = \frac{x}{x^2 + y^2}$ and $v = \frac{-y}{x^2 + y^2}$.

Since

$$u_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} = v_y$$
 and $u_y = \frac{-2xy}{(x^2 + y^2)^2} = -v_x$ $x^2 + y^2 \neq 0$,

f'(z) exists when $z \neq 0$. Moreover, when $z \neq 0$,

$$f'(z) = u_x + iv_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i\frac{2xy}{(x^2 + y^2)^2} = -\frac{x^2 - i2xy - y^2}{(x^2 + y^2)^2}$$
$$= -\frac{(x - iy)^2}{(x^2 + y^2)^2} = -\frac{(\overline{z})^2}{(z\overline{z})^2} = -\frac{(\overline{z})^2}{z^2(\overline{z})^2} = -\frac{1}{z^2}.$$

(b) $f(z) = x^2 + iy^2$. Hence $u = x^2$ and $v = y^2$. Now $u_x = v_y \Longrightarrow 2x = 2y \Longrightarrow y = x$ and $u_y = -v_x \Longrightarrow 0 = 0$.

So f'(z) exists only when y = x, and we find that

$$f'(x+ix) = u_x(x,x) + iv_x(x,x) = 2x + i0 = 2x.$$

4. Determine if the following functions are analytic

(a) f(z) = 3x + y + i(3y - x)
(b) f(z) = 2xy + i(x² - y²).

Solution:

(a)
f(z) = 3x + y + i(3y - x) = u + iv where u = 3x + y and v = 3y - x is entire since u_x = 3 = v_y and u_y = 1 = -v_x.

(b) f(z) = 2xy + i(x² - y²) = u + iv where u = 2xy and v = x² - y² is nowhere analytic since u_x = v_y ⇒ 2y = -2y ⇒ y = 0 and u_y = -v_x ⇒ 2x = -2x ⇒ x = 0,
which means that the Cauchy-Riemann equations hold only at the point z = (0,0) = 0.

5. Show that $u(x,y) = 2x - x^3 + 3xy^2$ is harmonic in some domain and find a harmonic conjugate v(x,y).

Solution:

It is straightforward to show that $u_{xx} + u_{yy} = 0$. To find a harmonic conjugate v(x, y), we start with $u_x(x, y) = 2 - 3x^2 + 3y^2$. Now

$$u_x = v_y \Longrightarrow v_y = 2 - 3x^2 + 3y^2 \Longrightarrow v(x, y) = 2y - 3x^2y + y^3 + \phi(x).$$

Then

$$u_y = -v_x \Longrightarrow 6xy = 6xy - \phi'(x) \Longrightarrow \phi'(x) = 0 \Longrightarrow \phi(x) = c.$$

Consequently,

$$v(x,y) = 2y - 3x^2y + y^3 + c.$$

6. Find all values of z such that $e^z = 1 + \sqrt{3}i$. Solution: Write $e^z = 1 + \sqrt{3}i$ as $e^x e^{iy} = 2e^{i(\pi/3)}$, from which we see that

$$e^x = 2$$
 and $y = \frac{\pi}{3} + 2n\pi$ $(n = 0, \pm 1, \pm 2, \cdots)$.

That is,

$$x = \ln 2$$
 and $y = \left(2n + \frac{1}{3}\right)\pi$ $(n = 0, \pm 1, \pm 2, \cdots).$

Consequently

$$z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i$$
 $(n = 0, \pm 1, \pm 2, \cdots).$