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1. Find all complex numbers z that are complex conjugates of their own squares i.e., z = z2.
Solution:

We need to solve the equation z = z2; that is, we need to find all pairs (x, y) of real numbers
such that x− iy = x2− y2+ i · 2xy. Since 1 and i are linearly independent, this means we need
to solve the two equations

x = x2 − y2
−y = 2xy

for x and y. For y = 0, we get x = 0 or x = 1. For y �= 0, we get x = −1
2

and y = ±1
2

. So

there are four solutions, namely, 0, 1,−1
2
+ i
1

2
,
1

2
− i1
2

.



2. Find all of the roots of (−8i)1/3 in the form a+ ib and point out which is the principal root.
Solution:

Since −8i = 8 exp
[
i
(
−π
2
+ 2kπ

)]
(k = 0, 1, 2), the three cube roots of the number z0 = −8i

are

(−8i)1/3 = 2 exp
[
i

(
−π
6
+
2kπ

3

)]
(k = 0, 1, 2) .

the principal one being

c0 = 2 exp

(
i
−π
6

)
= 2

(√
3

2
− i1
2
=
√
3− i

)

.

The others are
c1 = 2 exp

(
i
π

2

)
= 2i

and

c2 = 2 exp

(
i
7π

6

)
= 2

(

−
√
3

2
− i1
2

)

= −
(√
3 + 1

)
.



3. Determine where f ′ (z) exists and find its value when

(a) f (z) =
1

z
;

(b) f (z) = x2 + iy2.
Solution:

(a)

f (z) =
1

z
=
1

z
· z
z
=

z

|z|2
=

x

x2 + y2
+ i

−y
x2 + y2

. So

u =
x

x2 + y2
and v =

−y
x2 + y2

.

Since

ux =
y2 − x2
(x2 + y2)2

= vy and uy =
−2xy

(x2 + y2)2
= −vx x2 + y2 �= 0,

f ′ (z) exists when z �= 0. Moreover, when z �= 0,

f ′ (z) = ux + ivx =
y2 − x2
(x2 + y2)2

+ i
2xy

(x2 + y2)2
= −x

2 − i2xy − y2
(x2 + y2)2

= − (x− iy)
2

(x2 + y2)2
= − (z)2

(zz)2
= − (z)2

z2 (z)2
= − 1

z2
.

(b)
f (z) = x2 + iy2. Hence u = x2 and v = y2. Now

ux = vy =⇒ 2x = 2y =⇒ y = x and uy = −vx =⇒ 0 = 0.

So f ′ (z) exists only when y = x, and we find that

f ′ (x+ ix) = ux (x, x) + ivx (x, x) = 2x+ i0 = 2x.



4. Determine if the following functions are analytic
(a) f (z) = 3x+ y + i (3y − x)
(b) f (z) = 2xy + i

(
x2 − y2

)
.

Solution:

(a)
f (z) = 3x+ y︸ ︷︷ ︸+i (3y − x)︸ ︷︷ ︸ = u+ iv where u = 3x+ y and v = 3y − x is entire since

ux = 3 = vy and uy = 1 = −vx.
(b) f (z) = 2xy︸︷︷︸+i

(
x2 − y2

)
︸ ︷︷ ︸

= u+ iv where u = 2xy and v = x2− y2 is nowhere analytic since

ux = vy =⇒ 2y = −2y =⇒ y = 0 and uy = −vx =⇒ 2x = −2x =⇒ x = 0,

which means that the Cauchy-Riemann equations hold only at the point z = (0, 0) = 0.



5. Show that u (x, y) = 2x − x3 + 3xy2 is harmonic in some domain and find a harmonic
conjugate v (x, y).
Solution:

It is straightforward to show that uxx+uyy = 0. To find a harmonic conjugate v (x, y), we start
with ux (x, y) = 2− 3x2 + 3y2. Now

ux = vy =⇒ vy = 2− 3x2 + 3y2 =⇒ v (x, y) = 2y − 3x2y + y3 + φ (x) .

Then
uy = −vx =⇒ 6xy = 6xy − φ′ (x) =⇒ φ′ (x) = 0 =⇒ φ (x) = c.

Consquently,
v (x, y) = 2y − 3x2y + y3 + c.



6. Find all values of z such that ez = 1 +
√
3i.

Solution:

Write ez = 1 +
√
3i as exeiy = 2ei(π/3), from which we see that

ex = 2 and y =
π

3
+ 2nπ (n = 0,±1,±2, · · · ) .

That is,

x = ln 2 and y =

(
2n+

1

3

)
π (n = 0,±1,±2, · · · ) .

Consequently

z = ln 2 +

(
2n+

1

3

)
πi (n = 0,±1,±2, · · · ) .


