ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science

MATH 351 Complex Analysis I

Second Midterm SOLUTIONS August 4, 2008 9:00-10:30

Surname	:	
Name	:	
ID #	:	
Department	•	
Section	•	
Instructor	•	
Cimpature	•	
Signature	•	

- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
11	18	20	20	16	20	105

1. Find all the zeros of the function $f(z) = 2 + \cos z$. (Hint: if they exist, they must be nonreal.)

Solution:

Following the hint, write z = x + iy with real and imaginary parts $x, y \in \mathbb{R}$. But then

 $\cos z = \cos \left(x + iy \right) = \cos x \cos iy - \sin x \sin iy = \cos x \cosh y - i \sin x \sinh y,$

since $\cos iy = \cosh y$ and $\sin iy = i \sinh y$. To solve $2 + \cos z = 0$ is thus equivalent to finding z = x + iy such that $\cos y \cosh y = -2$ and $\sin x \sinh y = 0$.

Now $\sin x \sinh y = 0$ if and only if either $\sinh y = 0$ or $\sin x = 0$. The first case is excluded because it requires y = 0, so $\cosh y = 1$, so $\cos x = -2$ which cannot happen.

The second case is equivalent to $x = k\pi$ for $k \in \mathbb{Z}$. Now $\cosh y = \frac{1}{2} \left(e^y + e^{-y} \right) \ge 1$ for all real y with equality if and only if y = 0; otherwise, $\cosh y = C$ has two distinct real roots for every C > 1. We conclude that

 $-2 = \cos x \cosh y = \cos k\pi \cosh y = (-1)^k \cosh y$

has a solution if and only if $x = k\pi$ for some odd integer k and y is one of the two real roots of $\cosh y = 2$.

2. Find all of values of $\tan^{-1}(1+i)$. Solution:

$$\tan^{-1}(1+i) = \frac{i}{2}\log\left(\frac{i+1+i}{i-1-i}\right)$$
$$= \frac{i}{2}\log(-1-2i)$$
$$= \frac{i}{2}\left(\ln\sqrt{5}+i\arg(-1-2i)\right)$$
$$= -\frac{1}{2}\arg(-1-2i)+i\frac{\ln\sqrt{5}}{2}$$
$$= -\frac{1}{2}\arg(-1-2i)+i\ln 5$$

3. Evaluate the line integral $\int_C |z|^2 dz$ where C is the line segment from the point 0 to the point 1+i.

Solution:

Since $f(z) := |z|^2 = x^2 + y^2$, for z(t) = t + it, $(0 \le t \le 1)$ is the parametrization of C then we have z'(t) = (1+i) dt, $f(z(t)) = t^2 + t^2 = 2t^2$. Therefore

$$\int_{C} |z|^{2} dz = \int_{0}^{1} 2t^{2} (1+i) dt$$
$$= 2(1+i) \int_{0}^{1} t^{2} dt$$
$$= 2(1+i) \left[\frac{1}{3}t^{3}\right]_{0}^{1}$$
$$= \frac{2}{3}(1+i).$$

4. By finding an antiderivative, evaluate the integral $\int_{-\infty}^{\pi+2i} \int_{-\infty}^{\infty}$

$$\int_{0}^{\pi+2i} \cos\left(\frac{z}{2}\right) dz.$$
Solution:

$$\int_{0}^{\pi+2i} \cos\left(\frac{z}{2}\right) dz = \left[2\sin\left(\frac{z}{2}\right)\right]_{0}^{\pi+2i} = 2\sin\left(\frac{\pi+2i}{2}\right) - 2\sin\left(\frac{0}{2}\right)$$

$$= 2\frac{e^{i\left(\frac{\pi}{2}+i\right)} - e^{-i\left(\frac{\pi}{2}+i\right)}}{2i} = -i\left(e^{i\pi/2}e^{-1} - e^{-i\pi/2}e\right)$$

$$= -i\left(\frac{i}{e} + ie\right) = \frac{1}{e} + e = e + \frac{1}{e}.$$

5. Use Cauchy's Integral Formula to evaluate $\int_{|z-1|=1} \frac{\cos(2\pi z)}{z^2-1} dz$ where the integration path is oriented in the standard counterclockwise direction. **Solution:**

Let $f(z) = \frac{\cos(2\pi z)}{z+1}$. Then f(z) is analytic at all points both interior to and on the contour C. Therefore, by the Cauchy Integral Formula, we have

$$\int_{|z-1|=1} \frac{\cos(2\pi z)}{z^2 - 1} dz = 2\pi i f(1)$$

= $2\pi i \left[\frac{\cos(2\pi z)}{z + 1} \right]_{z=1}$
= $2\pi i \frac{\cos(2\pi (1))}{1 + 1}$
= $2\pi i \frac{1}{1 + 1} = \pi i.$

6. Find the value of the integral $\int_C \frac{z-b}{z-a} dz$ where C is the unit circle traversed once counterclockwise. Be sure to consider the cases |a| < 1 and |a| > 1. **Solution 1:**

If |a| > 1, then the integrand is analytic on |z| < |a| and Cauchy-Goursat Theorem says that

$$\int_C \frac{z-b}{z-a} \, dz = 0.$$

If |a| < 1, then define f(z) = (z - b) which is analytic on \mathbb{C} . Then Cauchy Integral Formula says that

$$\int_C \frac{z-b}{z-a} dz = \int_C \frac{f(z)}{z-a} dz$$
$$= 2\pi i f(a)$$
$$= 2\pi i (a-b).$$

Solution 2:

If |a| < 1, then we could notice that z - b = (z - a) + (a - b) and therefore

$$\int_C \frac{z-b}{z-a} dz = \int_C dz + (a-b) \int_C \frac{1}{z-a} dz$$
$$= 2\pi i (a-b).$$

There are other ways to do this as well, but these two methods are the simplest.