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• The exam consists of 6 questions.
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1. Find all the zeros of the function f (z) = 2 + cos z. (Hint: if they exist, they must be
nonreal.)
Solution:

Following the hint, write z = x+ iy with real and imaginary parts x, y ∈ R. But then
cos z = cos (x+ iy) = cosx cos iy − sin x sin iy = cos x cosh y − i sin x sinh y,

since cos iy = cosh y and sin iy = i sinh y. To solve 2 + cos z = 0 is thus equivalent to finding
z = x+ iy such that cos y cosh y = −2 and sin x sinh y = 0.
Now sinx sinh y = 0 if and only if either sinh y = 0 or sin x = 0. The first case is excluded
because it requires y = 0, so cosh y = 1, so cosx = −2 which cannot happen.

The second case is equivalent to x = kπ for k ∈ Z. Now cosh y = 1

2

(
ey + e−y

)
≥ 1 for all real

y with equality if and only if y = 0; otherwise, cosh y = C has two distinct real roots for every
C > 1. We conclude that

−2 = cosx cosh y = cos kπ cosh y = (−1)k cosh y
has a solution if and only if x = kπ for some odd integer k and y is one of the two real roots
of cosh y = 2.



2. Find all of values of tan−1 (1 + i).
Solution:

tan−1 (1 + i) =
i

2
log

(
i+ 1 + i

i− 1− i

)

=
i

2
log (−1− 2i)

=
i

2

(
ln
√
5 + i arg (−1− 2i)

)

= −1
2
arg (−1− 2i) + i ln

√
5

2

= −1
2
arg (−1− 2i) + i ln 5



3. Evaluate the line integral

∫

C

|z|2 dz where C is the line segment from the point 0 to the

point 1 + i.
Solution:

Since f (z) := |z|2 = x2 + y2, for z (t) = t+ it, (0 ≤ t ≤ 1) is the parametrization of C then we
have z′ (t) = (1 + i) dt, f (z (t)) = t2 + t2 = 2t2. Therefore

∫

C

|z|2 dz =

∫
1

0

2t2 (1 + i) dt

= 2 (1 + i)

∫
1

0

t2 dt

= 2 (1 + i)

[
1

3
t3
]1

0

=
2

3
(1 + i) .



4. By finding an antiderivative, evaluate the integral∫ π+2i

0

cos
(z
2

)
dz.

Solution:∫ π+2i

0

cos
(z
2

)
dz =

[
2 sin

(z
2

)]π+2i

0

= 2 sin

(
π + 2i

2

)
− 2 sin

(
0

2

)

= 2
ei(

π

2
+i) − e−i(π2+i)

2i
= −i

(
eiπ/2e−1 − e−iπ/2e

)

= −i
(
i

e
+ ie

)
=
1

e
+ e = e+

1

e
.



5. Use Cauchy’s Integral Formula to evaluate

∫

|z−1|=1

cos (2πz)

z2 − 1 dz where the integration path

is oriented in the standard counterclockwise direction.
Solution:

Let f (z) =
cos (2πz)

z + 1
. Then f (z) is analytic at all points both interior to and on the contour

C. Therefore, by the Cauchy Integral Formula, we have

∫

|z−1|=1

cos (2πz)

z2 − 1 dz = 2πif (1)

= 2πi

[
cos (2πz)

z + 1

]

z=1

= 2πi
cos (2π (1))

1 + 1

= 2πi
1

1 + 1
= πi.



6. Find the value of the integral

∫

C

z − b
z − a dz where C is the unit circle traversed once coun-

terclockwise. Be sure to consider the cases |a| < 1 and |a| > 1.
Solution 1:

If |a| > 1, then the integrand is analytic on |z| < |a| and Cauchy-Goursat Theorem says that
∫

C

z − b
z − a dz = 0.

If |a| < 1, then define f (z) = (z − b) which is analytic on C. Then Cauchy Integral Formula
says that

∫

C

z − b
z − a dz =

∫

C

f (z)

z − a dz

= 2πif (a)

= 2πi (a− b) .
Solution 2:

If |a| < 1, then we could notice that z − b = (z − a) + (a− b) and therefore
∫

C

z − b
z − a dz =

∫

C

dz + (a− b)
∫

C

1

z − a dz

= 2πi (a− b) .
There are other ways to do this as well, but these two methods are the simplest.


