CANKAYA UNIVERSITY

Department of Mathematics and Computer Science
MATH 351 Complex Analysis I

Practice Problems-1
First midterm

July 14, 2008
09:40

1. CoMPLEX NUMBERS
1.1. Section 4. (p. 11)

3. Verify that v/2|z| > |Re z| + |Im z|

Suggestion Reduce this inequality to (|z| — |y|)* > 0.

Solution:

Let z = = + iy = the inequality becomes v/2+/22 + 32 > || + |y|
= 2(2?+¢) 2 (2] +1y)* =2 +y* + 2|zl Jyl
— 2’4y —2|z||y| >0
= (lz|-ly)* = 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square.

4. In each case, sketch the set of points determined by the given condition:

(@) |z =144 =1; (b) |z+1i| <3; (c) |z — 4i| > 4.

Solution:

(a) |z — 14| = 1; it’s a circle with center zy = (1,—1) and radius R = 1.

(b) |z 44| < 3; it’s a disk with center zy = (0, —1) and radius R = 3.

(c) |z — 4i| > 4; it’s the set of points outside the disk of radius R = 4 and center zy = 4i.

13
'(7p Us?e the established properties of moduli to show that when |z3| # |24,
21+ 22 |21| + | 22]
z3+ 2| 7 llzs| = |zl
Solution:
At 21t 2 < 21 + |zl < 21 + |zl by triangle inequality |21 + 22| < |21| + |22]
z3t+ 21| [zs+zal T |lzs| = [zall T [[2s] — |2l

and the inequality |25 £ 24| > ||23] — |24]| (p-10).

10. By factoring z* — 422 + 3 into two quadratic factors, show that z lies on the circle |z| = 2,

then
1

1
24— 42243 3

E



Solution:
Factorizing z* — 42?2 + 3 = (22 — 1) (22 — 3)
1 1 1 1 1

A —422+3]  [(2-1)(2—3)]
1 1

4-—1)(4-3) 3

= <
v 21122 =3 = J]2P — 1] []2P — 3]

(p-21)
1. Find the principal argument Arg z when

(0) 2 = =5 (b) = = (ﬁ—¢)6.
Solution:

(a)

z

I A T A
T -2-2 21+4il—i 21—
—Arg(z) = -3¢
(b)

z:<\/§—i)6
. \/g 4 —i /6
Observefz\/§—Z:>|£|:\/3+1:2:>§:2 | =2e7

2 2

z = 56 = (26’”/6)6 = 20e7im — 260im — _64 (since —m = 7 + 27 and 2™ — 1)
= Arg(z) = 7.

1. Derive the following trigonometric identities:
(a) cos 30 = cos® @ — 3cosfsin® 6, (b) sin30 = 3 cos § — sin® 4.

Solution:

z = 4 ':_l 4 .1_1.__11—2' :—l<1—|—l>:£ _L_L :Qefi"mi/zl
—2—-2 214+41—1 21—42 4 4 V2 V2 4

—Arg(z) = -3¢

(b) 6
z = (\@—2)
V3

Observeﬁ:\/§—i:>|§\:w/3+1:2:>§:2<7_§> — 9ein/6

z = 56 = (26’”/6)6 = 2071 — 260im — _64 (since —m = 7 + 27 and 2™ — 1)
= Arg(z) = 7.

(p.73)
1. Verify that each of these functions is entire:

(a)f(z) =3z+y+1i(3y —z); (b)f (z) = sinz cosh y + i cos x sinh y;
(c)f (2) = e Ysinz —ie Ycosz; (d)f (2) = (2* —2) e e ™.
Solution:



(a)f (2) = 3z + y+i (3y — x) is entire since
—— N —

Uy =3=vyand uy, =1 = —v,

(b) f (2) = sinz cosh y +i cos x sinh y is entire since

- -~

u, = cosx coshy = v, and u, = sinxsinhy = —v,.
(c) f(z) =¢ Ysing +i (—e Y cosz) is entire since
Uy =€ Ycosr = v, and uy = —e Ysinx = —v,.
(d) f(z) = (2* —2) e e~ is entire since it is the product of entire functions
g(z)=2"—2and h(z) =e e ™ =e"(cosy —isiny) =e “cosy+i(—e “siny).
—_—

The function g is entire since it is a polynomial, and A is entire since

Uy = —e “cosy = v, and u, = —e "siny = —v,.

2. Show that each of these functions is nowhere analytic:

(a) f(2) =y + 1y

(b) f(2) = 2ay +i (2 — ¢?)
(c) f(z) =eYe"

Solution

(a)

f (2) = xy + iy is nowhere analytic since
Uy =Vy =y =1 and uy, = —v, = 2 =0,
which means that the Cauchy-Riemann equations hold only at the point z = (0,1) = 1.

(b)
f(z) =¢ee"" =¢Y (cosxw + isinx) is nowhere analytic since
Uy = vy = —€Ysinx = eYsinx = 2eYsine = 0 = sinz =0
and
Uy = —v, = eV cosz = —e¥ cosx = 2¢eY cosz = 0 = cosz = 0.
More precisely, the roots of the equation sinz = 0 are nm (n =0,4+1,£2,---), and cos (n7) =
(—1)" # 0. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.

4. In each case, determine the singular points of the function and state why the function is
analytic everywhere except at those points:

2241 2+ 2 +1
(a) f(Z) = m, (b) f(Z) = '22_32_'_27 (C) f(Z) - (2+2) <Z2—|—22—|—2)
Solution: (a)
f(z)= %; this function is the quotient of two polynomials (a) f (z) = ggjg, hence it’s

analytic in any domain throughout which (a) @ (z) # 0.

— z(2*+1) = 0iff (a) 2 = 0 or (a) z = +i (ant the numerator does not vanish at these
points)

— singular points: z = 0, +i (They are poles, i.e., Zli)(l;nii |f (2)] = +00)

(b)
A A : :
f(z)= 23,12 similarly as above, check check where the denominator vanishes:
22— 3z



3+vV9-8 3+1

and the numerator does not vanish at these points.
— singular points z = 1,2 (poles)

22-3242=0 < 2=

= z1=2,2=1

22+1
@& = 7T 12)
(z+2)(*+2:+42) =0iff r=—20r 22 +2:42=0¢<=2=-1£V1-2=-1%1
— singular points (poles) z = —2, —1 +1

(p-78)

7. Let a function f (2) be analytic in a domain D. Prove that f (z) must be constant throughout
D if

(a) f(2) is real-valued for all z € D;

(b) |f ()] is constant throughout D.

Solution:

(a)

Suppose f(z) e Rforall z € D = v (z,y) =0on D
= Uy (il?,y) = Uy (il],y) =0

and

Uy (,y) = —v; (z,y) =0 on D.

= Vu(z,y) =0on D.

u (z,y) = constant on D = f (2) = constant on D.
(b)

Suppose

|f(2)| =cforall z€ D

If c=0= f(z) =0 on D, hence it’s constant.
2

Ifc#0=>|f(2)|2=62<:>f(2)m=62<:>f(2)=fc(z)
— both f and f are analytic in D (since f = C—2 and f #0)

f

— f(z) = constant on D.

(otherway to solve it)

f (%) = c and suppose ¢ # 0 = u*> +v* = ¢
= 2uu, + 2vv, =0

2uu, + 2vv, =0

— 0 = (utty +vv,)? + (uty + v0,)? = w?u2 + ™02 + 2uvu,v, + uPul + 0%l + 2uvuy,
— (WP +0*) (W2 +u)) =0=ul+ul =0

= u, = u, =0 & (by C-R equations) = v, = v, =0

—> u = constant v = constant = f (z) = constant
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