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1.1. Section 4. (p. 11)

3. Verify that
√
2 |z| ≥ |Re z|+ |Im z|

Suggestion Reduce this inequality to (|x| − |y|)2 ≥ 0.
Solution:
Let z = x+ iy =⇒ the inequality becomes

√
2
√
x2 + y2 ≥ |x|+ |y|

⇐⇒ 2
(
x2 + y2

)
≥ (|x|+ |y|)2 = x2 + y2 + 2 |x| |y|

⇐⇒ x2 + y2 − 2 |x| |y| ≥ 0
⇐⇒ (|x| − |y|)2 ≥ 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square.
––––––––––––––––––––––––––––––––––––––––––

4. In each case, sketch the set of points determined by the given condition:
(a) |z − 1 + i| = 1; (b) |z + i| ≤ 3; (c) |z − 4i| ≥ 4.
Solution:
(a) |z − 1 + i| = 1; it’s a circle with center z0 = (1,−1) and radius R = 1.
(b) |z + i| ≤ 3; it’s a disk with center z0 = (0,−1) and radius R = 3.
(c) |z − 4i| ≥ 4; it’s the set of points outside the disk of radius R = 4 and center z0 = 4i.
––––––––––––––––––––––––––––––––––––––––––

(p.13)
7. Use the established properties of moduli to show that when |z3| �= |z4|,∣∣∣∣

z1 + z2
z3 + z4

∣∣∣∣ ≤
|z1|+ |z2|
||z3| − |z4||

.

Solution:∣∣∣∣
z1 + z2
z3 + z4

∣∣∣∣ =
|z1 + z2|
|z3 + z4|

≤ |z1|+ |z2|
||z3| − |z4||

≤ |z1|+ |z2|
||z3| − |z4||

by triangle inequality |z1 + z2| ≤ |z1| + |z2|
and the inequality |z3 ± z4| ≥ ||z3| − |z4|| (p.10).
––––––––––––––––––––––––––––––––––––––––––

10. By factoring z4 − 4z2 + 3 into two quadratic factors, show that z lies on the circle |z| = 2,
then ∣∣∣∣

1

z4 − 4z2 + 3

∣∣∣∣ ≤
1

3



Solution:
Factorizing z4 − 4z2 + 3 =

(
z2 − 1

) (
z2 − 3

)
∣∣∣∣

1

z4 − 4z2 + 3

∣∣∣∣ =
1

|z4 − 4z2 + 3| =
1

|(z2 − 1) (z2 − 3)| =
1

|z2 − 1| |z2 − 3| ≤
1

∣∣|z|2 − 1
∣∣ ∣∣|z|2 − 3

∣∣

=
1

(4− 1) (4− 3) =
1

3
.

––––––––––––––––––––––––––––––––––––––––––

(p.21)
1. Find the principal argument Arg z when

(a) z =
i

−2− 2i ; (b) z =
(√
3− i

)6
.

Solution:
(a)

z =
i

−2− 2i = −
1

2

i

1 + i

1− i
1− i = −

1

2

i− i2
1− i2 = −

1

4
(1 + i) =

√
2

4

(
− 1√

2
− i√

2

)
=

√
2

4
e−3πi/4

=⇒Arg(z) = −3π
4

(b)

z =
(√
3− i

)6

Observe ξ =
√
3− i =⇒ |ξ| =

√
3 + 1 = 2 =⇒ ξ = 2

(√
3

2
− i

2

)

= 2e−iπ/6

z = ξ6 =
(
2e−iπ/6

)6
= 26e−iπ = 26eiπ = −64 (since −π = π + 2π and e2πi = 1)

=⇒Arg(z) = π.
––––––––––––––––––––––––––––––––––––––––––

1. Derive the following trigonometric identities:
(a) cos 3θ = cos3 θ − 3 cos θ sin2 θ, (b) sin 3θ = 3 cos2 θ − sin3 θ.
Solution:
(a)

z =
i

−2− 2i = −
1

2

i

1 + i

1− i
1− i = −

1

2

i− i2
1− i2 = −

1

4
(1 + i) =

√
2

4

(
− 1√

2
− i√

2

)
=

√
2

4
e−3πi/4

=⇒Arg(z) = −3π
4

(b)

z =
(√
3− i

)6

Observe ξ =
√
3− i =⇒ |ξ| =

√
3 + 1 = 2 =⇒ ξ = 2

(√
3

2
− i

2

)

= 2e−iπ/6

z = ξ6 =
(
2e−iπ/6

)6
= 26e−iπ = 26eiπ = −64 (since −π = π + 2π and e2πi = 1)

=⇒Arg(z) = π.
––––––––––––––––––––––––––––––––––––––––––

(p.73)
1. Verify that each of these functions is entire:
(a)f (z) = 3x+ y + i (3y − x); (b)f (z) = sinx cosh y + i cosx sinh y;
(c)f (z) = e−y sin x− ie−y cosx; (d)f (z) =

(
z2 − 2

)
e−xe−iy.

Solution:



(a)f (z) = 3x+ y︸ ︷︷ ︸+i (3y − x)︸ ︷︷ ︸ is entire since

ux = 3 = vy and uy = 1 = −vx
(b) f (z) = sin x cosh y︸ ︷︷ ︸+i cosx sinh y︸ ︷︷ ︸ is entire since

ux = cosx cosh y = vy and uy = sin x sinh y = −vx.
(c) f (z) = e−y sinx︸ ︷︷ ︸+i

(
−e−y cosx

)
︸ ︷︷ ︸

is entire since

ux = e
−y cosx = vy and uy = −e−y sinx = −vx.

(d) f (z) =
(
z2 − 2

)
e−xe−iy is entire since it is the product of entire functions

g (z) = z2 − 2 and h (z) = e−xe−iy = e−x (cos y − i sin y) = e−x cos y︸ ︷︷ ︸+i
(
−e−x sin y

)
︸ ︷︷ ︸

.

The function g is entire since it is a polynomial, and h is entire since

ux = −e−x cos y = vy and uy = −e−x sin y = −vx.
–––––––––––––––––––––––––––––––––––––
2. Show that each of these functions is nowhere analytic:
(a) f (z) = xy + iy
(b) f (z) = 2xy + i

(
x2 − y2

)
.

(c) f (z) = eyeix

Solution:
(a)
f (z) = xy + iy is nowhere analytic since

ux = vy =⇒ y = 1 and uy = −vx =⇒ x = 0,

which means that the Cauchy-Riemann equations hold only at the point z = (0, 1) = i.
(b)
f (z) = eyeix = ey (cos x+ i sinx) is nowhere analytic since

ux = vy =⇒ −ey sin x = ey sin x =⇒ 2ey sin x = 0 =⇒ sin x = 0

and
uy = −vx =⇒ ey cosx = −ey cosx =⇒ 2ey cosx = 0 =⇒ cosx = 0.

More precisely, the roots of the equation sin x = 0 are nπ (n = 0,±1,±2, · · · ), and cos (nπ) =
(−1)n �= 0. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.
––––––––––––––––––––––––––––––––––––––––––

4. In each case, determine the singular points of the function and state why the function is
analytic everywhere except at those points:

(a) f (z) =
2z + 1

z (z2 + 1)
; (b) f (z) =

z3 + i

z2 − 3z + 2 ; (c) f (z) =
z2 + 1

(z + 2) (z2 + 2z + 2)
.

Solution: (a)

f (z) =
2z + 1

z (z2 + 1)
; this function is the quotient of two polynomials (a) f (z) =

P (z)

Q (z)
, hence it’s

analytic in any domain throughout which (a) Q (z) �= 0.
−→ z

(
z2 + 1

)
= 0 iff (a) z = 0 or (a) z = ±i (ant the numerator does not vanish at these

points)
=⇒ singular points: z = 0,±i (They are poles, i.e., lim

z→0,±i
|f (z)| = +∞)

(b)

f (z) =
z3 + i

z2 − 3z + 2 similarly as above, check check where the denominator vanishes:



z2 − 3z + 2 = 0 ⇐⇒ z =
3±

√
9− 8
2

=
3± 1
2

=⇒ z1 = 2, z2 = 1

and the numerator does not vanish at these points.
=⇒ singular points z = 1, 2 (poles)

(c) f (z) =
z2 + 1

(z + 2) (z2 + 2z + 2)
(z + 2)

(
z2 + 2z + 2

)
= 0 iff z = −2 or z2 + 2z + 2 = 0⇐⇒ z = −1±

√
1− 2 = −1± i

=⇒ singular points (poles) z = −2,−1± i
––––––––––––––––––––––––––––––––––––––––
(p.78)
7. Let a function f (z) be analytic in a domainD. Prove that f (z)must be constant throughout
D if
(a) f (z) is real-valued for all z ∈ D;
(b) |f (z)| is constant throughout D.
Solution:
(a)
Suppose f (z) ∈ R for all z ∈ D =⇒ v (x, y) = 0 on D
=⇒ ux (x, y) = vy (x, y) = 0
and
uy (x, y) = −vx (x, y) = 0 on D.
=⇒ ∇u (x, y) = 0 on D.
u (x, y) = constant on D =⇒ f (z) = constant on D.
(b)
Suppose
|f (z)| = c for all z ∈ D
If c = 0 =⇒ f (z) = 0 on D, hence it’s constant.

If c �= 0 =⇒ |f (z)|2 = c2 ⇐⇒ f (z) f (z) = c2 ⇐⇒ f (z) =
c2

f (z)

=⇒ both f and f are analytic in D (since f =
c2

f
and f �= 0)

=⇒ f (z) = constant on D.
(otherway to solve it)
f (z) = c and suppose c �= 0 =⇒ u2 + v2 = c2

=⇒ 2uux + 2vvx = 0
2uuy + 2vvy = 0

−→ 0 = (uux + vvx)
2 + (uuy + vvy)

2 = u2u2x + v
2v2x + 2uvuxvx + u

2u2y + v
2v2y + 2uvuyvy

−→
(
u2 + v2

) (
u2x + u

2

y

)
= 0 =⇒ u2x + u

2

y = 0
=⇒ ux = uy = 0 & (by C-R equations) =⇒ vx = vy = 0
=⇒ u = constant v = constant =⇒ f (z) = constant
––––––––––––––––––––––––––––––––––––––––––


