ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science **MATH 351 Complex Analysis I** Practice Problems-1 First midterm July 14, 2008 09:40

1. Complex Numbers

1.1. Section 4. (p. 11)

3. Verify that $\sqrt{2} |z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$ Suggestion Reduce this inequality to $(|x| - |y|)^2 \ge 0$. Solution: Let $z = x + iy \Longrightarrow$ the inequality becomes $\sqrt{2}\sqrt{x^2 + y^2} \ge |x| + |y|$ $\iff 2(x^2 + y^2) \ge (|x| + |y|)^2 = x^2 + y^2 + 2|x||y|$ $\iff x^2 + y^2 - 2|x||y| \ge 0$ $\iff (|x| - |y|)^2 \ge 0.$

This last form of the inequality to be verified is obviously true since the left-hand side is a perfect square.

4. In each case, sketch the set of points determined by the given condition:
(a) |z - 1 + i| = 1; (b) |z + i| ≤ 3; (c) |z - 4i| ≥ 4.
Solution:
(a) |z - 1 + i| = 1; it's a circle with center z₀ = (1, -1) and radius R = 1.
(b) |z + i| ≤ 3; it's a disk with center z₀ = (0, -1) and radius R = 3.
(c) |z - 4i| ≥ 4; it's the set of points outside the disk of radius R = 4 and center z₀ = 4i.

(p.13)

7. Use the established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\left|\frac{z_1+z_2}{z_3+z_4}\right| \le \frac{|z_1|+|z_2|}{||z_3|-|z_4||}.$$

Solution:

 $\left| \frac{z_1 + z_2}{z_3 + z_4} \right| = \frac{|z_1 + z_2|}{|z_3 + z_4|} \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||} \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}$ by triangle inequality $|z_1 + z_2| \le |z_1| + |z_2|$ and the inequality $|z_3 \pm z_4| \ge ||z_3| - |z_4||$ (p.10).

10. By factoring $z^4 - 4z^2 + 3$ into two quadratic factors, show that z lies on the circle |z| = 2, then

$$\left|\frac{1}{z^4 - 4z^2 + 3}\right| \le \frac{1}{3}$$

Solution:
Factorizing
$$z^4 - 4z^2 + 3 = (z^2 - 1)(z^2 - 3)$$

 $\left|\frac{1}{z^4 - 4z^2 + 3}\right| = \frac{1}{|z^4 - 4z^2 + 3|} = \frac{1}{|(z^2 - 1)(z^2 - 3)|} = \frac{1}{|z^2 - 1||z^2 - 3|} \le \frac{1}{||z|^2 - 1|||z|^2 - 3|}$
 $= \frac{1}{(4 - 1)(4 - 3)} = \frac{1}{3}.$

(p.21)
1. Find the principal argument Arg z when
(a)
$$z = \frac{i}{-2-2i}$$
; (b) $z = (\sqrt{3}-i)^6$.
Solution:
(a)
 $z = \frac{i}{-2-2i} = -\frac{1}{2}\frac{i}{1+i}\frac{1-i}{1-i} = -\frac{1}{2}\frac{i-i^2}{1-i^2} = -\frac{1}{4}(1+i) = \frac{\sqrt{2}}{4}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) = \frac{\sqrt{2}}{4}e^{-3\pi i/4}$
 $\Rightarrow \operatorname{Arg}(z) = -\frac{3\pi}{4}$
(b)
 $z = (\sqrt{3}-i)^6$
Observe $\xi = \sqrt{3}-i \Rightarrow |\xi| = \sqrt{3+1} = 2 \Rightarrow \xi = 2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right) = 2e^{-i\pi/6}$
 $z = \xi^6 = (2e^{-i\pi/6})^6 = 2^6e^{-i\pi} = 2^6e^{i\pi} = -64$ (since $-\pi = \pi + 2\pi$ and $e^{2\pi i} = 1$)
 $\Rightarrow \operatorname{Arg}(z) = \pi$.

1. Derive the following trigonometric identities:
(a)
$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$
, (b) $\sin 3\theta = 3\cos^2 \theta - \sin^3 \theta$.
Solution:
(a)
 $z = \frac{i}{-2 - 2i} = -\frac{1}{2} \frac{i}{1 + i} \frac{1 - i}{1 - i} = -\frac{1}{2} \frac{i - i^2}{1 - i^2} = -\frac{1}{4} (1 + i) = \frac{\sqrt{2}}{4} \left(-\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right) = \frac{\sqrt{2}}{4} e^{-3\pi i/4}$
 $\Rightarrow \operatorname{Arg}(z) = -\frac{3\pi}{4}$
(b)
 $z = \left(\sqrt{3} - i\right)^6$
Observe $\xi = \sqrt{3} - i \Rightarrow |\xi| = \sqrt{3 + 1} = 2 \Rightarrow \xi = 2 \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = 2e^{-i\pi/6}$
 $z = \xi^6 = \left(2e^{-i\pi/6}\right)^6 = 2^6 e^{-i\pi} = 2^6 e^{i\pi} = -64 \text{ (since } -\pi = \pi + 2\pi \text{ and } e^{2\pi i} = 1)$
 $\Rightarrow \operatorname{Arg}(z) = \pi.$

(p.73) **1.** Verify that each of these functions is entire: (a) f(z) = 3x + y + i(3y - x); (b) $f(z) = \sin x \cosh y + i \cos x \sinh y$; (c) $f(z) = e^{-y} \sin x - ie^{-y} \cos x$; (d) $f(z) = (z^2 - 2)e^{-x}e^{-iy}$. Solution: (a) $f(z) = \underbrace{3x + y + i}(\underbrace{3y - x})$ is entire since $u_x = 3 = v_y$ and $u_y = 1 = -v_x$ (b) $f(z) = \underbrace{\sin x \cosh y}_{i} + i \underbrace{\cos x \sinh y}_{i}$ is entire since $u_x = \cos x \cosh y = v_y$ and $u_y = \sin x \sinh y = -v_x$. (c) $f(z) = \underbrace{e^{-y} \sin x}_{i} + i \underbrace{(-e^{-y} \cos x)}_{i}$ is entire since $u_x = e^{-y} \cos x = v_y$ and $u_y = -e^{-y} \sin x = -v_x$. (d) $f(z) = (z^2 - 2) e^{-x} e^{-iy}$ is entire since it is the product of entire functions $g(z) = z^2 - 2$ and $h(z) = e^{-x} e^{-iy} = e^{-x} (\cos y - i \sin y) = \underbrace{e^{-x} \cos y + i}_{i} \underbrace{(-e^{-x} \sin y)}_{i}$.

The function g is entire since it is a polynomial, and h is entire since

$$u_x = -e^{-x} \cos y = v_y$$
 and $u_y = -e^{-x} \sin y = -v_x$

2. Show that each of these functions is nowhere analytic:
(a) f(z) = xy + iy
(b) f(z) = 2xy + i (x² - y²).
(c) f(z) = e^ye^{ix}
Solution:
(a)
f(z) = xy + iy is nowhere analytic since

$$u_x = v_y \Longrightarrow y = 1 \text{ and } u_y = -v_x \Longrightarrow x = 0,$$

which means that the Cauchy-Riemann equations hold only at the point z = (0, 1) = i. (b)

 $f(z) = e^y e^{ix} = e^y (\cos x + i \sin x)$ is nowhere analytic since

$$u_x = v_y \Longrightarrow -e^y \sin x = e^y \sin x \Longrightarrow 2e^y \sin x = 0 \Longrightarrow \sin x = 0$$

and

$$u_y = -v_x \Longrightarrow e^y \cos x = -e^y \cos x \Longrightarrow 2e^y \cos x = 0 \Longrightarrow \cos x = 0$$

More precisely, the roots of the equation $\sin x = 0$ are $n\pi$ $(n = 0, \pm 1, \pm 2, \cdots)$, and $\cos(n\pi) = (-1)^n \neq 0$. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.

4. In each case, determine the singular points of the function and state why the function is analytic everywhere except at those points:

(a) $f(z) = \frac{2z+1}{z(z^2+1)}$; (b) $f(z) = \frac{z^3+i}{z^2-3z+2}$; (c) $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$. Solution: (a) $f(z) = \frac{2z+1}{z(z^2+1)}$; this function is the quotient of two polynomials (a) $f(z) = \frac{P(z)}{Q(z)}$, hence it's analytic in any domain throughout which (a) $Q(z) \neq 0$. $\rightarrow z(z^2+1) = 0$ iff (a) z = 0 or (a) $z = \pm i$ (and the numerator does not vanish at these points) \Rightarrow singular points: $z = 0, \pm i$ (They are poles, i.e., $\lim_{z \to 0, \pm i} |f(z)| = +\infty$) (b) $f(z) = \frac{z^3+i}{z^2-3z+2}$ similarly as above, check check where the denominator vanishes: $z^{2} - 3z + 2 = 0 \iff z = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2} \Longrightarrow z_{1} = 2, z_{2} = 1$ and the numerator does not vanish at these points. \implies singular points z = 1, 2 (poles) (c) $f(z) = \frac{z^2 + 1}{(z+2)(z^2 + 2z + 2)}$ $(z+2)(z^2+2z+2) = 0$ iff z = -2 or $z^2+2z+2 = 0 \iff z = -1 \pm \sqrt{1-2} = -1 \pm i$ \implies singular points (poles) $z = -2, -1 \pm i$ (p.78)7. Let a function f(z) be analytic in a domain D. Prove that f(z) must be constant throughout D if (a) f(z) is real-valued for all $z \in D$; (b) |f(z)| is constant throughout D. Solution: (a) Suppose $f(z) \in \mathbb{R}$ for all $z \in D \Longrightarrow v(x, y) = 0$ on D $\implies u_x(x,y) = v_y(x,y) = 0$ and $u_{u}(x,y) = -v_{x}(x,y) = 0$ on D. $\implies \nabla u(x,y) = 0 \text{ on } D.$ $u(x,y) = \text{constant on } D \Longrightarrow f(z) = \text{constant on } D.$ (b) Suppose |f(z)| = c for all $z \in D$ If $c = 0 \Longrightarrow f(z) = 0$ on D, hence it's constant. If $c \neq 0 \Longrightarrow |f(z)|^2 = c^2 \iff f(z)\overline{f(z)} = c^2 \iff \overline{f(z)} = \frac{c^2}{f(z)}$ \implies both f and \overline{f} are analytic in D (since $\overline{f} = \frac{c^2}{f}$ and $f \neq 0$) $\implies f(z) = \text{constant on } D.$ (otherway to solve it) f(z) = c and suppose $c \neq 0 \Longrightarrow u^2 + v^2 = c^2$ $\implies 2uu_x + 2vv_x = 0$ $2uu_y + 2vv_y = 0$ $\longrightarrow 0 = (uu_x + vv_x)^2 + (uu_y + vv_y)^2 = u^2 u_x^2 + v^2 v_x^2 + 2uvu_x v_x + u^2 u_y^2 + v^2 v_y^2 + 2uvu_y v_y$ $\longrightarrow \left(u^2 + v^2\right) \left(u_x^2 + u_y^2\right) = 0 \Longrightarrow u_x^2 + u_y^2 = 0$ $\implies u_x = u_y = 0 \& (by C-R equations) \implies v_x = v_y = 0$ $\implies u = \text{constant } v = \text{constant} \implies f(z) = \text{constant}$