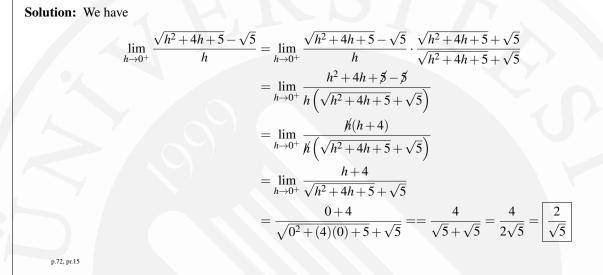
Math 113 Summer 2016 First Exam July 12, 2016 Your Name / Ad - Soyad Signature / İmza Problem 1 2 3 4 Total

									(75 min.)		
Student ID # / Öğrenci No											
									(use a blue pen!))	

Problem	1	2	3	4	Total
Points:	30	20	25	25	100
Score:					

- 1. Find the following limits.
 - (a) (15 Points) $\lim_{h \to 0^+} \frac{\sqrt{h^2 + 4h + 5} \sqrt{5}}{h}$.



You are not allowed to use L'Hôpital's rule.

(b) (7 Points) $\lim_{\theta \to -\infty} \frac{\cos \theta}{3\theta}$.

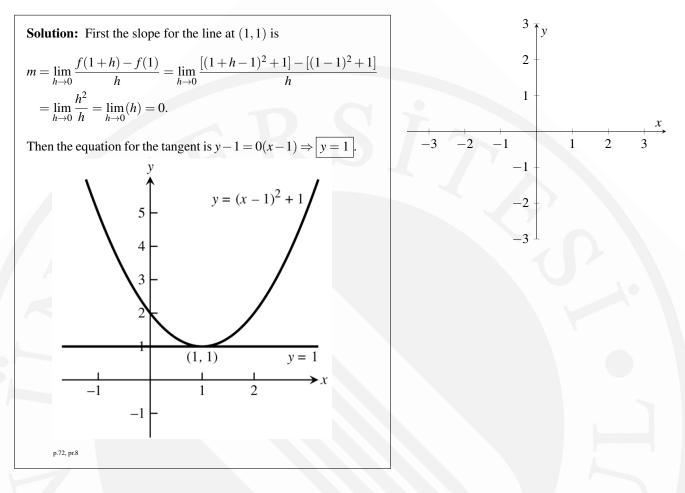
Solution: We know that

$$-1 \le \cos \theta \le 1, \quad \forall \theta \Rightarrow -\frac{1}{3\theta} \le \frac{\cos \theta}{3\theta} \le \frac{1}{3\theta}, \quad \forall \theta \ne 0$$
and also $\lim_{\theta \to -\infty} \frac{-1}{3\theta} = \lim_{\theta \to -\infty} \frac{1}{3\theta} = 0$. Hence by Sandwich Theorem, $\lim_{\theta \to -\infty} \frac{\cos \theta}{3\theta} = 0$.

You are not allowed to use L'Hôpital's rule. May be Sandwich Theorem

(c) (8 Points) $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}$.

Solution: As $x \to -\infty$, we have $\sqrt{x^2} = |x| = -x$ and so $x = -\sqrt{x^2}$ $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1} = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1} \cdot \frac{1/x}{1/x}$ $= \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{1 + 1/x}$ $= \lim_{x \to -\infty} \frac{-\sqrt{1 + 1/x^2}}{1 + 1/x} = \boxed{-1}$ 2. (a) (10 Points) Find an equation for the tangent to the curve $y = (x - 1)^2 + 1$ at point (1,1). Then sketch this curve and tangent together.



(b) (10 Points) Find the value(s) of c if the function

$$g(x) = \begin{cases} \frac{x^2 - 16}{x^2 - 3x - 4} & x \neq 4\\ c, & x = 4 \end{cases}$$

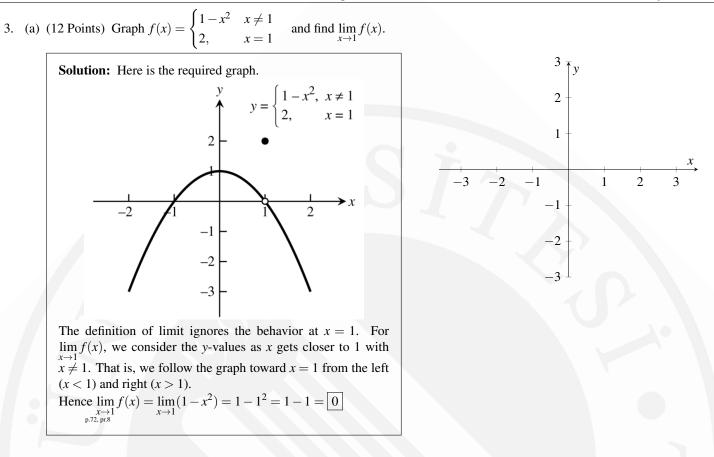
is continuous at x = 4.

Solution: First note that

$$\lim_{x \to 4} g(x) = \lim_{x \to 4} \frac{x^2 - 16}{x^2 - 3x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)(x + 1)} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)(x + 1)}$$

$$= \lim_{x \to 4} \frac{x + 4}{x + 1} = \frac{4 + 4}{4 + 1} = \frac{8}{5}$$
Now if $g(x)$ is continuous at $x = 4$, then $\lim_{x \to 4} g(x) = g(4)$, that is $c = \frac{8}{5}$.

Math 113 Summer 2016



(b) (13 Points) Explain why the equation $\cos x = x$ has at least one solution.

Solution: Solutions to the equation $\cos(x) = x$ are obviously the same thing as solutions to the equation $\cos(x) - x = 0$. These, in turn, are the same thing as zeros of the function $f(x) = \cos(x) - x$. This function is *continuous* for all *x*, and one has that

 $f(0) = \cos(0) - 0 = 1 - 0 = 1$

is positive, whereas

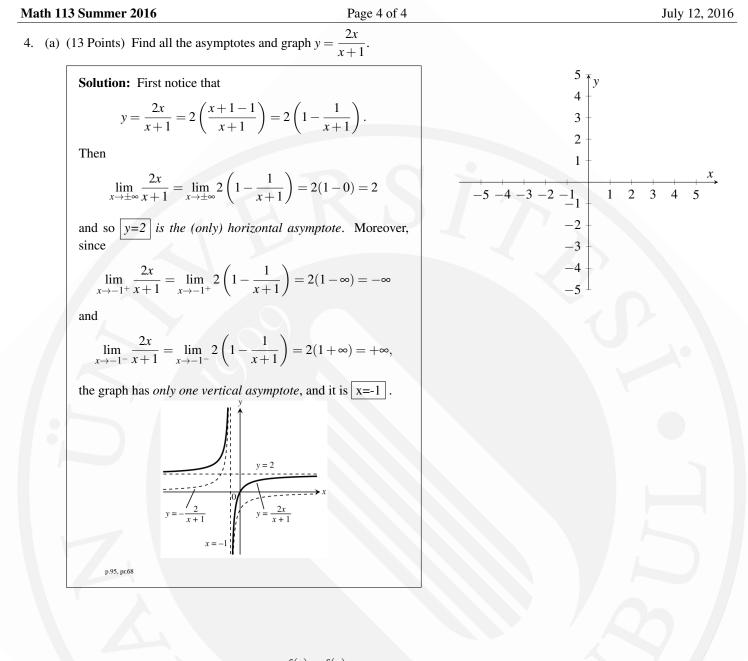
 $f(\pi/2) = \cos(\pi/2) - \pi/2 = 0 - \pi/2 = -\pi/2$

is negative.

By the intermediate value theorem, there has to be some *c* between 0 and $\pi/2$ for which f(c) = 0. [And this umber *c* is of course a solution to the original equation $\cos(x) = x$]

p.83, pr.52

You may use Intermediate Value Theorem.



(b) (12 Points) Use the formula $f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$ to find the derivative of $g(x) = 1 + \sqrt{x}$.

Solution: Here
$$f(z) = g(z) = 1 + \sqrt{z}$$
 and $f(x) = g(x) = 1 + \sqrt{x}$ and so

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{g(z) - g(x)}{z - x}$$

$$= \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

$$= \lim_{z \to x} \frac{f(z) - f(x)}{\sqrt{z - x}}$$

$$= \lim_{z \to x} \frac{\sqrt{z - \sqrt{x}}}{\sqrt{x}}$$

$$= \lim_{z \to x} \frac{1}{(\sqrt{z} + \sqrt{x})} = \frac{1}{(\sqrt{x} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$$

1