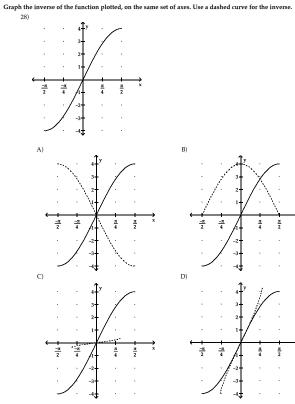
_						
Exam		In(x -	+ 1) . ln(x + 9975)			
Name		13) Show that $\lim_{X \to \infty} \frac{\ln(x+1)}{\ln x}$	$\frac{1}{x} = \lim_{x \to \infty} \frac{\ln x}{\ln x}$		13	3)
		Explain why this is the	case.			
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the	question.	14) Graph $f(x) = (x - 4)^2 e^x$	and its first derivative to	gether. Comment on the be	havior of f in 14	l)
Use logarithmic differentiation to find the derivative of y.			d values of f . Identify sig			·
$ \begin{array}{l} 1) \ y = \sqrt{x(x+2)} \\ A) \left(\frac{\sqrt{x(x+2)}}{2} \left \frac{1}{x} + \frac{1}{x+2} \right \\ C) \left(\frac{1}{2} \left \frac{1}{x} + \frac{1}{x+2} \right \\ \end{array} \right) \\ D) \sqrt{x(x+2)}(2x+2) \end{array} $	1)	15) Which of the following $\csc^{-1}\frac{1}{8}$ or $\cos^{-1}8$ 16) Show that $y = \sqrt{x^6 + x}$			15 showing that	i)
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the qu	estion.	they both grow at the s	same rate as $y = x^3$ as $x \rightarrow 0$	o.	Ū.	
 Provide an appropriate response. 2) Which of the following items is undefined and why? tan⁻¹ 2 or cos⁻¹ 2 	2)	MULTIPLE CHOICE. Choose the Answer the question appropriat 17) Find a curve through t	ely.	-	-	stion. 17)
3) Show that $\int \ln ax dx = x \ln ax - x + C$.	3)	$L = \int_0^1 \sqrt{1 + \frac{1}{49}} e^x dx$	0 11	whose length nom x=0 to y		
4) Suppose you are looking for an item in an ordered list one million items long. Which would be better, a sequential search or a binary search? Why?	4)	A) $y = x^2$	B) $y = \frac{2}{7}e^{x/2}$	C) $y = e^{x} - 1$	D) $y = \frac{2}{7}e^{x/2} - \frac{2}{7}e^{x/2}$	27
5) Consider the graphs of $y = \cos^{-1} x$ and $y = \sin^{-1} x$. Does it make sense that the derivatives of these functions are opposites? Explain.	5)	Solve the initial value problem. 18) $\frac{dy}{dx} = -6e^{-x} \sec e^{-x} \tan x$	e^{-x} , $y(0) = 6 \sec 1 + 6$			18)
6) Graph $f(x) = \cos^{-1}\frac{x}{\sqrt{x^2+1}}$ and $g(x) = \tan^{-1}\frac{1}{x}$. Explain why the graph looks like it does.	6)	A) $y = 6 \tan e^{-x} + 6$ C) $y = 6 \sec e^{-x} + 6$		B) y = -6 sec e ^{-x} + 1 D) y = -6 sec x + 1		
7) A polynomial $f(x)$ has a degree smaller than or equal to another polynomial $g(x)$. Does $f = O(g)$ and does $g = O(f)$?	7)	Find the derivative of y with res 19) $y = e^7 - 9x$ A) $7e^7 - 9x$	pect to x, t, or θ, as appro	priate.	D) -9 ln (7 - 9x)	19)
8) Graph $y = \sin^{-1}(\sin x)$. Explain why the graph looks like it does.	8)	A) /e' - /A	в) e ⁻⁹	C) -9e/ - 3x	$D) = 9 \ln(7 - 9x)$	
		Determine whether the integrati				
9) How do you know that $f(x) = -3e^x$ is concave down over every interval of x-values?	⁹⁾	$20) \int \frac{\tanh^{-1}(\ln x)}{x} dx = \ln x$	$x \tanh^{-1}(\ln x) + \frac{1}{2}\ln(1 - \frac{1}{2})$	$(\ln x)^2) + C$		20)
10) Explain when $\log_a b$ could equal $1/\log_a b$.	10)	A) Yes		B) No		
11) Derive the identity sec^-1(-x) = π - sec^-1 x by combining the following two equations: $\cos^{-1}(-x)$ = π - $\cos^{-1}x$ sec^-1 x = $\cos^{-1}(1/x)$	11)	A value of sinh x or cosh x is giv other indicated hyperbolic funct 21) $\cosh x = \frac{17}{15}$, x < 0, cscl	tion.	and the identity $\cosh^2 x - s$	inh ² x = 1 to find th	21)
12) Show that the equation for converting base 10 logarithms to base 4 logarithms is log4 x = $\frac{\ln 10}{\ln 4}$ log ₁₀ x.	12)	A) - $\frac{8}{15}$	B) $\frac{15}{8}$	C) - <u>15</u> <u>17</u>	D) - <u>15</u> <u>8</u>	

Find the limit. 22) $\lim_{x \to -\infty} \tan^{-1} x$				22)
A) $\frac{\pi}{2}$	B) 0	C) $-\frac{\pi}{2}$	D) -∞	
$\lim_{x \to \infty} x \tan^{-1} \frac{6}{x}$				23)
A) -6	B) 6	C) $\frac{1}{6}$	D) ∞	
Evaluate the integral.				
24) $\int_{0}^{\ln 5} 8 \cosh^2\left(\frac{x}{2}\right)$	dx			24)
A) $\frac{8}{3}(e^{15} - e^{-15})$	B) $4\left(\frac{12}{5} + \ln 5\right)$	C) 17576 125	D) $4\left(\frac{13}{5} - \ln 5\right)$	
Use logarithmic differentiat 25) $y = (x + 9)^{X}$	ion to find the derivative	of y with respect to the i	ndependent variable.	25)
A) $x + (9)^{x-1}$		B) $x \ln(x + 9)$		
C) $(x + 9)^{x} \left[\ln(x + 9)^{x} \right]$	$(9) + \frac{x}{x+9}$	D) $\ln(x+9) + \frac{3}{x-3}$	<u>x</u> + 9	
Find the slowest growing ar	id the fastest growing fun	ctions as x→∞.		
26) $y = x + 7$ $y = e^{x}$				26)
$y = x^2 + \cos^2 x$				
$y = 6^{X}$	_		×	
A) Slowest: $y = x$ Fastest: $y = 6^{3}$		B) Slowest: y = e Fastest: y = x ²		
C) Slowest: $y = x$		D) Slowest: $y = x$		
Fastest: $y = e^{x}$		Fastest: $y = x^2$	$2 + \cos^2 x$	
Solve the initial value problem 27) $\frac{dy}{dx} = \frac{8}{16 + x^2}$, y(6)				27)
A) $y = 2 \tan^{-1} \frac{x}{4}$	- 3 B) $y = \tan^{-1} \frac{x}{4} - 3$	C) $y = 2 \cot^{-1} \frac{x}{4}$	- 3 D) $y = \tan^{-1} \frac{x}{4}$	

2


28)

÷

x

 $\frac{\pi}{2}$

 $\frac{\pi}{2}$

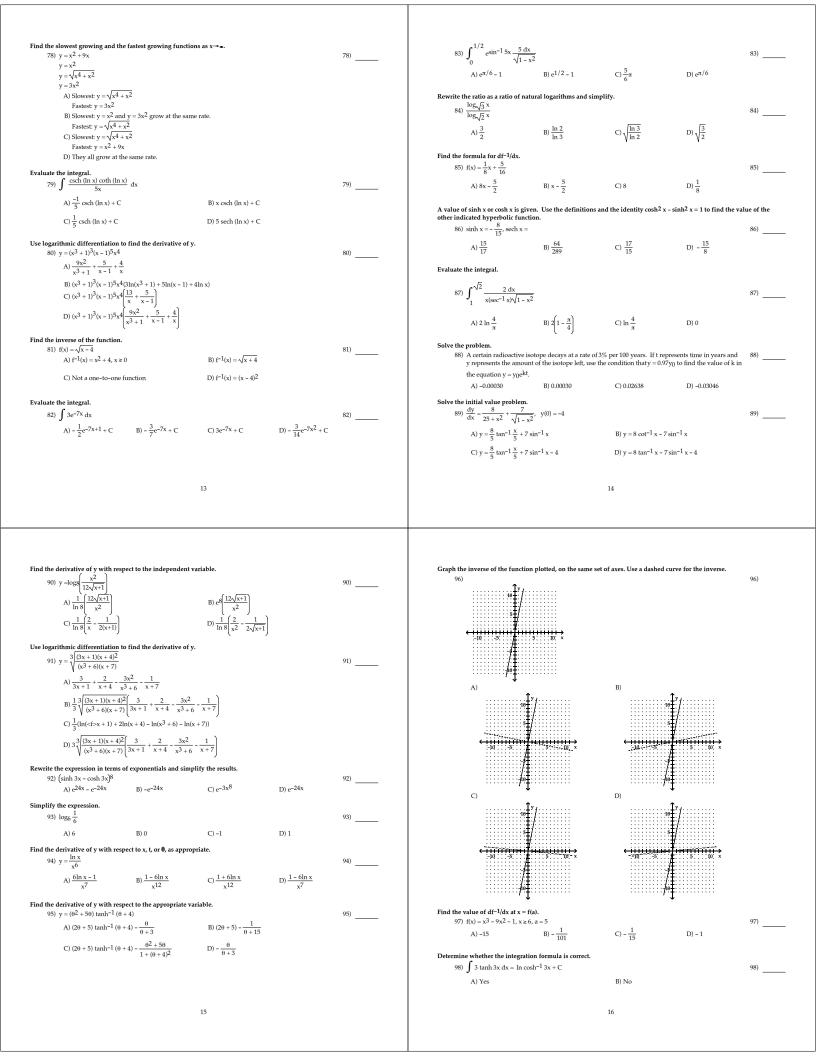
aluate the integral. 29) $\int_{4}^{2\sqrt{11}} \frac{dt}{\sqrt{t^2 - 8t + 20}}$		29)	$36) \int \frac{\mathrm{d}x}{\sqrt{16-x^2}}$				36)
	G		A) $\frac{1}{2}\sin^{-1}\frac{1}{4}x + C$	B) $2\cos^{-1}\frac{1}{4}x + C$	$C)\sin^{-1}\frac{1}{4}x + C$	D) $\cos^{-1}\frac{1}{4}x + C$	
A) Undefined B) $\frac{\pi}{12}$	C) $\frac{\pi}{10} + \frac{\sqrt{3}}{2}$ D) $\frac{\pi}{6}$	<u>4</u> 5	Is the function graphed below one- 37)	-to-one?			37)
and $\frac{dy}{dx}$. 30) $6^{x+y} = y^{\ln 6}$		30)		· · · · · · · · · · · · · · · · · · ·			
(a) $\frac{6x + y}{6x + y + y \ln 6 - 1}$	B) $\frac{6^{x+y}}{6^{x+y} + \ln 6 y^{\ln 6} - 1}$						
C) $\frac{\ln 6 \ln y}{xy}$	D) $\frac{1}{y \ln 6 - 1}$		-10 -3. 5	::::10: ×			
aluate the integral.				· · · · · · · · · · · · · · · · · · ·			
31) $\int_{0}^{\sqrt{\ln \pi}} 2x e^{x^2} \sin(e^{x^2}) dx$		31)	A) No		B) Yes		
A) 1 - cos 1 B) -1	C) 1 D) 1	+ cos 1	Evaluate the integral. 38) $\int -e^{\cos^{-1}x} \frac{dx}{\sqrt{1-x^2}}$				38) _
ad the derivative of y with respect to x.			A) e ^{cos⁻¹ x} + C	B) $\frac{e^{\sin^{-1}x}}{\sin^{-1}x} + C$	C) $-e^{\sin^{-1}x} + C$	D) $\sqrt{-e^{\cos^{-1}x}} + C$	
32) $y = \tan^{-1} \sqrt{7x}$ A) $\frac{1}{1+7x}$ B) $\frac{1}{\sqrt{1-7x}}$	C) $\frac{1}{14\sqrt{7x(1+7x)}}$ D) $\frac{1}{2}$	$\frac{7}{2(1 + 7x)\sqrt{7x}}$ 32)		sin * x			
nd the derivative of y.							
33) $y = \ln(\operatorname{sech} (3x + 1))$ A) -3 $\tanh(3x + 1)$ B) - $\tanh(3x + 1)$	C) tanh (3x + 1) D) – s	33) 3 sech (3x + 1)					
lve the initial value problem.							
34) $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -3\mathrm{e}^{-X}, \ y(0) = -4, \ y'(0) = 0$		34)					
A) $y = 3e^{-x} + C$ C) $y = -3e^{-x} - 4$	B) $y = -3e^{-x} - 3x - 1$ D) $y = -3e^{-x} + 3x - 7$						
termine whether the integration formula is correct. 35) $\int \tanh^{-1} x dx = x \tanh^{-1} x + \frac{1}{2} \ln (1 - x^2) +$		35)					
A) Yes	B) No						
	5				6		
	5				6		
aph the inverse of the function plotted, on the sam		te inverse.	Use logarithmic differentiation to f	ind the derivative of y		endent variable.	
aph the inverse of the function plotted, on the sam 39) 		ie inverse. 39)	41) $y = x^3 \sin x$			vendent variable.	41) _
				$\frac{n x}{x}$	with respect to the indeg		41) _
39)			$\begin{array}{l} 41) \ y=x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right) \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right) \\ \end{array}$ Find the derivative of y with respective of the derivative of the derive of the derive of the derive of the deri	$\left(\frac{\ln x}{x}\right)$ $\left(\frac{\sin x}{x}\right)$	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$		_
			41) $y = x^3 \sin x$ A) $x \sin x \left(\cos x \ln x + \frac{\sin x}{5}\right)$ C) $3 x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{5}\right)$ Find the derivative of y with respected to $y = \sinh^{-1} \sqrt{5x}$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ to the appropriate variant	with respect to the indeg B) 3 sin x ln x D) 3 cos x ln x + $\frac{sin}{x}$ tiable.	<u>×</u>	41)
39)			$\begin{array}{l} 41) \ y=x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right) \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right) \\ \end{array}$ Find the derivative of y with respective of the derivative of the derive of the derive of the derive of the deri	$\frac{n x}{x} \int_{0}^{\infty} \frac{\sin x}{x}$ It to the appropriate var B) $\frac{5}{2\sqrt{5x(1+5x)}}$	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$		_
39)			41) $y = x^3 \sin x$ A) $x \sin x \left[\cos x \ln x + \frac{\sin x}{2} \right]$ C) $3 x^3 \sin x \left[\cos x \ln x + \frac{\sin x}{2} \right]$ Find the derivative of y with respect 42) $y = \sinh^{-1} \sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2}$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ $(t to the appropriate var) B) \frac{5}{2\sqrt{5x(1+5x)}} formula is correct.$	with respect to the indep B) 3 sin x ln x D) 3 cos x ln x + $\frac{\sin 1}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$	<u>×</u>	_
39)	e set of axes. Use a dashed curve for th		41) $y = x^3 \sin x$ A) $x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3 x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ Find the derivative of y with respected by $y = \sinh^{-1} \sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2}$ A) No	$\frac{\sin x}{x}$ $\frac{\sin x}{x}$ $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $\operatorname{sech}^{-1} x + \frac{1}{2}\sqrt{1-x^4} + C$	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes	D) $\frac{1}{\sqrt{1+5x}}$	42)
39)	e set of axes. Use a dashed curve for th B)		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \Big[\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \Big[\cos x \ln x + \frac{\sin x}{2} \\ dx \Big] \\ Find the derivative of y with respective of y with respective of y with respective of y and y$	$\frac{\sin x}{x}$ it to the appropriate var $B) \frac{5}{2\sqrt{5}x(1+5x)}$ formula is correct. $sech^{-1}x + \frac{1}{2}\sqrt{1-x^4} + C$ perbolic function in term	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes	$D) \frac{1}{\sqrt{1+5x}}$	42)
39)	e set of axes. Use a dashed curve for th		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \Big[\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \Big[\cos x \ln x + \frac{\sin x}{2} \\ dx \Big] \\ Find the derivative of y with respective of y with respective of y with respective of y and y$	$\frac{\sin x}{x}$ $\frac{\sin x}{x}$ $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $\operatorname{sech}^{-1} x + \frac{1}{2}\sqrt{1-x^4} + C$	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes	D) $\frac{1}{\sqrt{1+5x}}$	42)
39)	e set of axes. Use a dashed curve for th B)		41) $y = x^3 \sin x$ A) $x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3 x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ Find the derivative of y with respect 42) $y = \sinh^{-1} \sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2}$ A) No Express the value of the inverse hyper 44 $\tanh^{-1}\left(\frac{10}{11}\right)$ A) $\frac{1}{2} \ln -21$ Determine whether the integration 43 $\frac{1}{2} \ln -21$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ et to the appropriate var $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $B) \frac{1}{2} \ln 21$ formula is correct.	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes	$D) \frac{1}{\sqrt{1+5x}}$	42)
39)	e set of axes. Use a dashed curve for th B)		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ \frac{1}{2\sqrt{5x}} \\ A) \ \frac{1}{2\sqrt{5x}} \\ A) \ \frac{1}{2\sqrt{5x}(1+5x)} \end{array}$ $\begin{array}{c} \text{Determine whether the integration} \\ 43) \ \int 2x^{3} \ \sec h^{-1} \ x^{2} \ dx = \frac{x^{4}}{2} \\ A) \ No \\ \text{Express the value of the inverse hyp} \\ 44) \ \tanh^{-1}\left[\frac{10}{11}\right] \\ A) \ \frac{1}{2} \ln -21 \end{array}$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ et to the appropriate var $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $B) \frac{1}{2} \ln 21$ formula is correct.	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes	$D) \frac{1}{\sqrt{1+5x}}$	42)
(1,2,2,3)	B)		41) $y = x^3 \sin x$ A) $x \sin x \left[\cos x \ln x + \frac{\sin x}{2} \right]$ C) $3 x^3 \sin x \left[\cos x \ln x + \frac{\sin x}{2} \right]$ C) $3 x^3 \sin x \left[\cos x \ln x + \frac{\sin x}{2} \right]$ Find the derivative of y with respected as $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2^4}$ A) No Express the value of the inverse hyperbolic and the inverse hyperbolic an	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ B) $\frac{\sin x}{2\sqrt{5x(1+5x)}}$ formula is correct. sech ⁻¹ x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in term B) $\frac{1}{2} \ln 21$ formula is correct. ann ⁻¹ x - $\int \frac{x^5 dx}{1+x^2} + C$ Use the definitions an	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$ riable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$ B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$	42)
39)	B)		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ A \right) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ \frac{\sin x}{$	$\frac{\sin x}{x} = \frac{\sin x}{x}$ Et to the appropriate var B) $\frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. sech ⁻¹ x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in terr B) $\frac{1}{2}$ ln 21 formula is correct. an ⁻¹ x - $\int \frac{x^5 dx}{1+x^2} + C$ Use the definitions an an-	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes d the identity $\cosh^2 x - \frac{1}{2}$	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the v	42)
39)	B)		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ A \right) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ \frac{\sin x}{$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ $(b) = \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $(b) = \frac{1}{2} \ln 21$ formula is correct. $(b) =$	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes d the identity $\cosh^2 x - \frac{1}{2}$	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$	42)
(1,2,2,3)	B)		$\begin{array}{c} 41) \ y = x^{3} \sin x \\ A) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ C) \ 3 \ x^{3} \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ A \right) \ x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \\ \frac{\sin x}{$	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ $(a) = \frac{\sin x}{x}$ $(b) = \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. $(b) = \frac{1}{2} \ln 21$ formula	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$ riable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$ B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes of the identity $\cosh^2 x - C$ C) $\frac{13}{5}$	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the x D) $\frac{5}{13}$	42)
39) $\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	B) $-\frac{1}{10}$ $+\frac{1}{10}$	39)	41) $y = x^3 \sin x$ A) $x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ Find the derivative of y with respect 42) $y = \sinh^{-1} \sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2}$ A) No Express the value of the inverse hyperbolic function 43) $\int \frac{1}{2} \ln -21$ Determine whether the integration 43) $\frac{1}{2} \ln -21$ Determine whether the integration 45) $\int x^4 \tan^{-1} x dx = \frac{1}{5} \left[x^5 \tan x + x^5 + x^5 \right]$ A value of sinh x or cosh x is given. other indicated hyperbolic function 46) $\cosh x = \frac{13}{12}, x > 0$, $\tanh x$ A) $-\frac{25}{144}$ Solve the problem. 47) A region in the first quadred y evolving the first strength of the strengt of the strength of the st	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ $\frac{\sin x}{x}$ $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. sech-1 x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in term $B) \frac{1}{2} \ln 21$ formula is correct. $an^{-1}x - \int \frac{x^5 dx}{1+x^2} + C$ Use the definitions an b. $=$ $B) \frac{5}{12}$ trant is bounded above b he y-axis, and on the rig e region about the x-axi	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$ B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes d the identity $\cosh^2 x - C$ C) $\frac{13}{5}$ y the curve $y = \cosh x$, b ht by the line $x = 7$. Find is.	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the v D) $\frac{5}{13}$ elow by the curve the volume of the solid	42) 43) 44) 45) alue of the 46)
 39) 39) 39) 39) 39) 39) 30) 30) 30) 30) 40) 30) 30) 30) 31) 41) 40) Consider the area of the region in the first question 	B) (-1)	39)	41) $y = x^3 \sin x$ A) $x \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ C) $3x^3 \sin x \left(\cos x \ln x + \frac{\sin x}{2} \right)$ Find the derivative of y with respect 42) $y = \sinh^{-1} \sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2^{-1}}$ A) No Express the value of the inverse hyperbolic function 43) $\frac{1}{2} \ln -21$ Determine whether the integration 45) $\int x^4 \tan^{-1} x dx = \frac{1}{5} \left[x^5 \operatorname{tr} x \right]$ A) No A value of sinh x or cosh x is given, other indicated hyperbolic function 46) $\cosh x = \frac{132}{144}$ Solve the problem. 47) A region in the first quadry y = sinh x, on the left by the second	$\frac{\ln x}{x} = \frac{\sin x}{x}$ B) $\frac{\sin x}{2\sqrt{5x(1+5x)}}$ formula is correct. sech-1 x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in term B) $\frac{1}{2} \ln 21$ formula is correct. an-1 x - $\int \frac{x^5 dx}{1+x^2} + C$ Use the definitions and Let $\frac{5}{12}$ the performant is bounded above b he y-axis, and on the fig	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$ B) Yes ms of natural logarithme C) $\frac{1}{2} \ln 1$ B) Yes d the identity $\cosh^2 x - C$ C) $\frac{13}{5}$ y the curve $y = \cosh x$, b ht by the linex = 7. Find	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the v D) $\frac{5}{13}$ elow by the curve	42) 43) 44) 45) alue of the 46)
A) (-)	B) B) B) C) C) C) C) C) C) C) C) C) C	39)	41) $y = x^3 \sin x$ A) $x \sin x \left\{ \cos x \ln x + \frac{\sin x}{2} \right\}$ C) $3x^3 \sin x \left\{ \cos x \ln x + \frac{\sin x}{2} \right\}$ Find the derivative of y with respect 42) $y = \sinh^{-1}\sqrt{5x}$ A) $\frac{1}{2\sqrt{5x(1+5x)}}$ Determine whether the integration 43) $\int 2x^3 \operatorname{sech}^{-1} x^2 dx = \frac{x^4}{2^{-1}}$ A) No Express the value of the inverse hyperbolic function 43) $\frac{1}{2} \ln -21$ Determine whether the integration 45) $\int x^4 \tan^{-1} x dx = \frac{1}{5} \left[x^5 \operatorname{tr} x \right]$ A) No A value of sinh x or cosh x is given, other indicated hyperbolic function 46) $\cosh x = \frac{132}{144}$ Solve the problem. 47) A region in the first quadry $y = \sinh x$, on the left by the generated by revolving the A) 7π Evaluate the integral.	$\frac{\ln x}{x}$ $\frac{\sin x}{x}$ $\frac{\sin x}{x}$ $B) \frac{5}{2\sqrt{5x(1+5x)}}$ formula is correct. sech-1 x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in term $B) \frac{1}{2} \ln 21$ formula is correct. $an^{-1}x - \int \frac{x^5 dx}{1+x^2} + C$ Use the definitions an b. $=$ $B) \frac{5}{12}$ trant is bounded above b he y-axis, and on the rig e region about the x-axi	with respect to the indep B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin x}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$ B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes d the identity $\cosh^2 x - C$ C) $\frac{13}{5}$ y the curve $y = \cosh x$, b ht by the line $x = 7$. Find is.	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the v D) $\frac{5}{13}$ elow by the curve the volume of the solid	42) 43) 44) 45) alue of the 46)
39) 39) 39) 30) 30) 30) 30) 30) 30) 30) 30	B) B) B) C) C) C) C) C) C) C) C) C) C	39)	41) $y = x^3 \sin x$ A) $x \sin x \left\{ \cos x \ln x + \frac{\sin x}{2} \right\}$ C) $3 x^3 \sin x \left\{ \cos x \ln x + \frac{\sin x}{2} \right\}$ Find the derivative of y with respective of y with respective of y and the derivative of y with respective of the derivative of y with respective of the derivative of y and the derivative of the derivative of the derivative of y and the derivative of the deriv	$\frac{\sin x}{x}$ $\frac{\sin x}{x}$ et to the appropriate var $\frac{B}{2\sqrt{5x(1+5x)}}$ formula is correct. sech ⁻¹ x + $\frac{1}{2}\sqrt{1-x^4}$ + C perbolic function in terr $\frac{B}{1}\frac{1}{2}\ln 21$ formula is correct. $\ln^{-1} x - \int \frac{x^5 dx}{1+x^2} + C$ Use the definitions an $\frac{B}{12}$ erant is bounded above b he y-axis, and on the rigg region about the x-axi B) 0	with respect to the indeg B) $3 \sin x \ln x$ D) $3 \cos x \ln x + \frac{\sin y}{x}$ itable. C) $\frac{5}{2\sqrt{5x(5x-1)}}$: B) Yes ms of natural logarithms C) $\frac{1}{2} \ln 1$ B) Yes of the identity $\cosh^2 x - C$ C) $\frac{13}{5}$ y the curve $y = \cosh x$, b ht by the line $x = 7$. Find s. C) 2π	D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{\sqrt{1+5x}}$ D) $\frac{1}{2} \ln 231$ sinh ² x = 1 to find the v D) $\frac{5}{13}$ elow by the curve the volume of the solid	42) 43) 44) 45) value of the 46) 47)

50) $\int \coth(5x) dx$ A) ln sinh 5x + C C) $\frac{1}{5} \operatorname{csch}^2 5x + C$ 50) ve the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ (xpress the value of the inverse hyperbolic fur 52) $\cosh^{-1} 4$ A) ln $(4 + \sqrt{17})$ B) ln (8) (value the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} (\frac{7}{6}x) + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) ve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3x$ (xpress the value of the inverse hyperbolic fur 55) $\sinh^{-1} (\frac{-3}{4})$ A) $\ln (\frac{-3}{4} + \sqrt{10})$ B) $\ln \frac{1}{2}$ (xvalue of sinh x or cosh x is given. Use the different difference is the value of the inverse hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ ind the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ $x \to \infty$ A) 0 B) x	C) $\frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} \right)$ section in terms of natural log C) ln (4 - $\sqrt{1}$ H + C B) $\frac{1}{6} \tan^{-1} \left\{ \frac{1}{6} \right\}$ D) $\sin^{-1} \left\{ \frac{7}{6} \right\}$ e-x + C C) y = 3e ^{-x} + section in terms of natural log C) ln 2	$\int_{1}^{3} \frac{x}{3} = 3$ $\frac{x}{5} + C$ $5x + C$ to $x = \ln \sqrt{5}$. $\frac{1}{5}$ D) $\frac{13}{10}$ for the form of the form	53) C + C 54) e=x + 1 55)	-
A) $y = 2 \sec^{-1} \frac{x}{3} - 3 - \frac{2}{3}\pi$ C) $y = 2 \sec^{-1} \frac{x}{3} - 3$ Evaluate the integral. 50) $\int \coth(5x) dx$ A) $\ln \sinh 5x + C$ C) $\frac{1}{5} \operatorname{csch}^2 5x + C$ 50) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic function 52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} (\frac{7}{6}x) + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) ve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3a^{-x}$ Express the value of the inverse hyperbolic function. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3a^{-x}$ Express the value of the inverse hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x = \frac{1}{3}$ A) $\ln \left(-\frac{3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the duther indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x = \frac{1}{3}$ b) $\frac{12}{13}$ Find the limit. 65) $\lim_{n \to \infty} \cot^{-1} x$ A) 0 B) ∞ Exervite the following without using trigonom 66) $\cos(\sin^{-1} u)$	D) $y = 2 \sin^{-1}$ B) 5 ln $\left(\sinh D \right) \frac{1}{5} \ln \left \sinh D \right \frac{1}{5} \ln \left \sin D \right \frac{1}{5} \ln \left -\frac{1}{5} \ln \left -1$	$\int_{1}^{3} \frac{x}{3} = 3$ $\frac{x}{5} + C$ $5x + C$ to $x = \ln \sqrt{5}$. $\frac{1}{5}$ D) $\frac{13}{10}$ for the form of the form	51) 52) 53) C + C $e^{-x} + 1$ 55) 55)	-
Evaluate the integral. 50) $\int \coth(5x) dx$ A) ln $ \sinh 5x + C$ C) $\frac{1}{5} \operatorname{csch}^2 5x + C$ 50) we the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic function 52) $\cosh^{-1} 4$ A) ln $(4 + \sqrt{17})$ B) ln (8) Evaluate the integral. 53) $\int \frac{7 + 14x}{64 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} (\frac{7}{6}x) + \frac{1}{7} \ln 36 + 49x^2 + C$ 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-3x}$ Express the value of the inverse hyperbolic function. 54) $\ln (\frac{-3}{4} + \sqrt{10})$ B) ln $\frac{1}{2}$ 4) $\ln (\frac{-3}{4} + \sqrt{10})$ B) ln $\frac{1}{2}$ 4) $\ln (\frac{-3}{15} + \sqrt{10})$ B) ln $\frac{1}{2}$ 4) $\ln (\frac{-3}{15} + \sqrt{10})$ B) ln $\frac{1}{2}$ 5) $\sinh^{-1} (\frac{-3}{15})$ B) $\ln \frac{1}{2}$ 5) $\sinh^{-1} (\frac{-3}{15})$ B) $\ln \frac{1}{2}$ 5) $\sinh^{-1} (\frac{-3}{15})$ B) $\ln \frac{1}{2}$ 5) $\ln \frac{1}{10} + \ln \frac{1}{10}$ 6) $\ln \cos(x - \frac{11}{5}, x < 0, \coth x = \frac{1}{3}, x < 0, O$ B) ∞ Events the following without using trigonom 6) $\cos(\sin^{-1} u)$	B) 5 ln $\left(\sinh D \right) \frac{1}{5} \ln \sinh D \frac{1}{5} \ln \sin D \frac{1}{5} \ln $	$\frac{x}{5} + C$ 5x + C to $x = \ln \sqrt{5}$. $\frac{1}{5} \qquad D) \frac{13}{10}$ garithms. $\overline{5} \qquad D) \ln (4 + \frac{7}{5}x) + \frac{1}{6} \sin^{-1}(\frac{7}{6}x) + C$ $\frac{1}{7} + \frac{1}{7} \ln 36 + 49x^{2} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \ln 36 + 49x^{2} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \ln 36 + 49x^{2} - \frac{1}{7} + $	51) 52) 53) C + C $e^{-x} + 1$ 55) 55)	-
A) $\ln \sinh 5x + C$ C) $\frac{1}{5} \operatorname{csch}^2 5x + C$ Solve the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic fur 52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ Solve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3$ Express the value of the inverse hyperbolic fur 55) $\sinh^{-1} \left[\frac{-3}{4}\right]$ A) $\ln \left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the diviter indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	D) $\frac{1}{5}$ ln sinh curve y = $\frac{1}{2}$ cosh 2x from x=0 C) $\frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} - $	5x + C to $x = \ln \sqrt{5}$. $\frac{1}{5}$ D) $\frac{13}{10}$ garithms. $\overline{5}$ D) $\ln (4 + \frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{6}\sin^{-1}(\frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{7}\ln 36 + 49x^{2} - \frac{1}{7}$ 3x - 2 D) $y = 3egarithms.D) \ln (4)$	51) 52) 53) C + C $e^{-x} + 1$ 55) 55)	-
A) $\ln \sinh 5x + C$ C) $\frac{1}{5} \operatorname{csch}^2 5x + C$ Solve the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic fur 52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ Solve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3$ Express the value of the inverse hyperbolic fur 55) $\sinh^{-1} \left[\frac{-3}{4}\right]$ A) $\ln \left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the diviter indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	D) $\frac{1}{5}$ ln sinh curve y = $\frac{1}{2}$ cosh 2x from x=0 C) $\frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} - $	5x + C to $x = \ln \sqrt{5}$. $\frac{1}{5}$ D) $\frac{13}{10}$ garithms. $\overline{5}$ D) $\ln (4 + \frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{6}\sin^{-1}(\frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{7}\ln 36 + 49x^{2} - \frac{1}{7}$ 3x - 2 D) $y = 3egarithms.D) \ln (4)$	51) 52) 53) C + C $e^{-x} + 1$ 55) 55)	-
$C) \frac{1}{5} \operatorname{csch}^{2} 5x + C$ Solve the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic function 52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ isvaluate the integral. 53) $\int \frac{7 \cdot 14x}{36 + 49x^{2}} dx$ A) $\frac{1}{6} \tan^{-1} \left(\frac{7}{6}x\right) + \frac{1}{7} \ln 36 + 49x^{2} + C$ Solve the initial value problem. 54) $\frac{d^{2}y}{dx^{2}} = 3c^{-x}, y(0) = 1, y'(0) = 0$ A) $y = 3c^{-x} - 3x + 4$ B) $y = -3$ Express the value of the inverse hyperbolic function. 54) $\frac{d^{2}y}{4x^{2}} = 3c^{-x}, y(0) = 1, y'(0) = 0$ A) $y = 3c^{-x} - 3x + 4$ B) $y = -3$ Express the value of the inverse hyperbolic function. 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the different initiated hyperbolic function. 64) $\cosh x = \frac{13}{5}, x < 0, \coth x = \frac{1}{3}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	D) $\frac{1}{5}$ ln sinh curve y = $\frac{1}{2}$ cosh 2x from x=0 C) $\frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} - $	5x + C to $x = \ln \sqrt{5}$. $\frac{1}{5}$ D) $\frac{13}{10}$ garithms. $\overline{5}$ D) $\ln (4 + \frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{6}\sin^{-1}(\frac{7}{6}x) + C$ $\frac{1}{7}x + \frac{1}{7}\ln 36 + 49x^{2} - \frac{1}{7}$ 3x - 2 D) $y = 3egarithms.D) \ln (4)$	52) 53) C + C $e^{-x} + 1$ 55) find the value of the	-
Solution the problem. 51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic fur 52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ Followe the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$ Express the value of the inverse hyperbolic fur 55) $\sinh^{-1} \left[\frac{-3}{4}\right]$ A) $\ln \left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ Express the value of sinh x or cosh x is given. Use the dether indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	finitions and the identity co function is the identity co $C) \frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} - $	to x = ln $\sqrt{5}$. (1) $\frac{1}{5}$ D) $\frac{13}{10}$ (2) $\frac{1}{5}$ D) ln (4 + $\frac{7}{5}$) D) ln (4 + $\frac{7}{5}$) D) ln (4 + $\frac{7}{7}$ ln $ 36 + 49x^2 - \frac{1}{7}$ (3) $x - 2$ D) y = 3e carithms. D) ln (4)	52) 53) C + C $e^{-x} + 1$ 55) find the value of the	-
51) Find the length of the segment of the A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic fur 52) $\cosh^{-1}4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $98x + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $98x + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 50) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 51) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 52) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 53) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ 54) $4x^2 = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3a^{-2}$ 55) $\sinh^{-1}\left(\frac{-3}{4}\right)^{-1}$ A) $\ln \left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ 55) $\sinh^{-1}\left(\frac{-3}{4}\right)^{-1}$ A) $\ln \left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ 54) $\sin \left(\frac{1}{3} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ 55) $\sinh^{-1}\left(\frac{-3}{4}\right)^{-1}$ 56) $\lim_{x \to \infty} \cot^{-1}x$ A) 0 B) ∞ Events the following without using trigonom 6c) $\cos(\sin^{-1}u)$	c) $\frac{1}{4} \left(\sqrt{5} - \frac{1}{\sqrt{5}} - \frac{1}{5$	$\frac{1}{5}$ D) $\frac{13}{10}$ garithms. $\overline{5}$ D) ln (4 + $\overline{5}$) D) ln (4 + $\frac{7}{5}$ N) $\frac{1}{6} \sin^{-1}\left(\frac{7}{6}x\right) + C$ $\frac{1}{7} \ln 36 + 49x^2 -$ 3x - 2 D) y = 3e garithms. D) ln (4)	52) 53) C + C $e^{-x} + 1$ 55) find the value of the	-
A) 5 B) $\frac{6}{5}$ Express the value of the inverse hyperbolic fure $522 \cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ isvaluate the integral. $53) \int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left(\frac{7}{6}x\right) + \frac{1}{7} \ln 36 + 49x^2 + C$ solve the initial value problem. $54) \frac{d^2y}{d^2x^2} = 3c^{-x}, y(0) = 1, y'(0) = 0$ A) $y = 3c^{-x} - 3x + 4$ B) $y = -3a$ Express the value of the inverse hyperbolic fure $55) \sinh^{-1} \left(\frac{-3}{4}\right)$ A) $\ln \left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the dether indicated hyperbolic function. $64) \cosh x = \frac{13}{5}, x < 0, \coth x =$ A) $c = \frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. $65) \lim_{x \to \infty} \cot^{-1} x$ $x \to \infty$ A) 0 B) ∞ Rewrite the following without using trigonom $6c) \cos(\sin^{-1} u)$	$C) \frac{1}{4} \left\{ \sqrt{5} - \frac{1}{\sqrt{5}} - \frac{1}{5$	$\frac{1}{5}$ D) $\frac{13}{10}$ garithms. $\overline{5}$ D) ln (4 + $\overline{5}$) D) ln (4 + $\frac{7}{5}$ N) $\frac{1}{6} \sin^{-1}\left(\frac{7}{6}x\right) + C$ $\frac{1}{7} \ln 36 + 49x^2 -$ 3x - 2 D) y = 3e garithms. D) ln (4)	52) 53) C + C $e^{-x} + 1$ 55) find the value of the	-
Express the value of the inverse hyperbolic function (32) $\cosh^{-1} 4$ (31) $\ln(4 + \sqrt{17})$ (32) $\ln(8)$ (32) $\int \frac{7 + 14x}{36 + 49x^2} dx$ (33) $\int \frac{7 + 14x}{36 + 49x^2} dx$ (34) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6x} \right] + \frac{1}{7} \ln 36 + 49x^2 + C$ (35) $8x + \frac{1}{7} \ln 36 + 49x^2 + C$ (36) $\ln(36 + 49x^2) + C$ (37) $\ln(36 + 49x^2) + C$ (38) $\frac{d^2y}{dx^2} = 3e^{-x}, y(0) = 1, y'(0) = 0$ (39) $y = 3e^{-x} - 3x + 4$ (37) $y = -3e^{-x} - 3x + 4$ (37) $y = 3e^{-x} - 3x + 4$ (37) $y = 3e^{-x} - 3x + 4$ (37) $y = -3e^{-x} - 3x + 4$ (37) $y = -3e^{-x} - 3x + 4$ (37) $y = -3e^{-x} - 3x + 4$ (37) $x = -3e^{-x} - 3x + 4$ (37) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ (37) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ (37) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ (37) $\ln\left(\frac{1}{2} - 3e^{-x}\right)$ (38) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ (38) $\ln\left(\frac{1}{2} - 3e^{-x}\right)$ (39) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ (39) $\ln\left(\frac{1}{2} - 3e^{-x}\right)$ (40) $\cosh x = \frac{13}{5}, x < 0, \text{ oth } x = -3e^{-x}, x < -3e^{-x}$ (41) $\cosh x = \frac{13}{5}, x < 0, \text{ oth } x = -3e^{-x}, x < -3e^{-x}$ (52) $\lim_{x \to \infty} \cot^{-1} x + 3e^{-x}$ (53) $\lim_{x \to \infty} \cot^{-1} x + 3e^{-x}$ (54) 0 (55) $\lim_{x \to \infty} \cot^{-1} x + 3e^{-x}$ (55) $\lim_{x \to \infty} \cot^{-1} x + 3e^{-x}$ (56) $\log(\sin^{-1} u)$	finitions and the identity co $x = \frac{1}{2}$	parithms. $\overline{5}$ D) ln (4 + $\overline{5}$) D) ln (4 + $\overline{7}$ x) $+\frac{1}{6}\sin^{-1}\left(\frac{7}{6}x\right) + C$ $+\frac{1}{7}\ln 36 + 49x^2 + C$ -3x - 2 D) y = 3e parithms. D) ln (4)	+ √15) 53) C + C 54) e=x + 1 55) find the value of the	_
52) $\cosh^{-1} 4$ A) $\ln (4 + \sqrt{17})$ B) $\ln (8)$ ivaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1} \left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ c) $98x + \frac{1}{7} \ln 36 + 49x^2 + C$ solve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -34$ ixpress the value of the inverse hyperbolic function. 55) $\sinh^{-1} \left[\frac{-3}{4}\right]$ A) $\ln \left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the different indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x = A$, $-\frac{5}{13}$ B) $\frac{12}{13}$ find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	C) $\ln (4 - \sqrt{1})$ C) $\ln (4 - \sqrt{1})$ D) $\sin^{-1} \left[\frac{7}{6} x \right]$ $e^{-x} + C$ C) $y = 3e^{-x} + 100$ C) $\ln 2$ 9 finitions and the identity co	$\overline{5}$ D) ln (4 + $\overline{5}x) + \frac{1}{6} \sin^{-1}\left(\frac{7}{6}x\right) + 6$ $+ \frac{1}{7} \ln 36 + 49x^{2} + \frac{1}{7} \ln $	+ √15) 53) C + C 54) e=x + 1 55) find the value of the	_
Evaluate the integral. 53) $\int \frac{7 + 14x}{36 + 49x^2} dx$ A) $\frac{1}{6} \tan^{-1}\left[\frac{7}{6}x\right] + \frac{1}{7} \ln 36 + 49x^2 + C$ C) $98x + \frac{1}{7} \ln 36 + 49x^2 + C$ Follow the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$. (A) $\ln \left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ For a standard equation of the inverse hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x = -x^{-x}$ A) 0 B) $\frac{12}{13}$ Find the limit. (5) $\lim_{x \to \infty} \cot^{-1}x$ A) 0 B) ∞ Rewrite the following without using trigonom (6) $\cos(\sin^{-1}u)$	$F(x) = \frac{1}{6} + C = B + C = B + C = B + C = B + C = C = B + C = C = C = C = C = C = C = C = C = C$	$\frac{7}{6}x\right) + \frac{1}{6}\sin^{-1}\left(\frac{7}{6}x\right) + (\frac{7}{6}x) + (\frac{7}{6}x) + (\frac{7}{6}x) + \frac{1}{7}\ln 36 + 49x^2 + \frac{1}{7}\ln 36 + \frac{1}{7}\ln$	53) C + C 54) e=x + 1 55) find the value of the	-
A) $\frac{1}{6} \tan^{-1}\left(\frac{7}{6}x\right) + \frac{1}{7} \ln 36 + 49x^2 - C) 98x + \frac{1}{7} \ln 36 + 49x^2 + C$ Solve the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3e^{-x}$. Express the value of the inverse hyperbolic function. 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ 51) $\ln \frac{1}{2}$ 52) $\ln \frac{1}{2}$ 53) $\ln \frac{1}{2}$ 54) $\ln \frac{1}{2}$ 55) $\ln \frac{1}{2}$ 56) $\ln \frac{1}{2}$ C) $\ln \frac{1}{2}$ 57) $\ln \frac{1}{2}$ 58) $\ln \frac{1}{2}$ 59) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 50) $\ln \frac{1}{2}$ 51) $\ln \frac{1}{2$	-x + C C) y = 3e-x + action in terms of natural log C) ln 2 9	-3x - 2 D) y = 3e garithms. D) ln (4)	C + C 54)	-
Following without using trigonom 6) the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3$. Express the value of the inverse hyperbolic function. 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\frac{1}{2}$ c) $\frac{1}{2}$	-x + C C) y = 3e-x + action in terms of natural log C) ln 2 9	-3x - 2 D) y = 3e garithms. D) ln (4)	54) e=x + 1 55) find the value of the	_
Following without using trigonom 6) the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3$. Express the value of the inverse hyperbolic function. 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\frac{1}{2}$ c) $\frac{1}{2}$	-x + C C) y = 3e-x + action in terms of natural log C) ln 2 9	-3x - 2 D) y = 3e garithms. D) ln (4)	54) e=x + 1 55) find the value of the	-
Following without using trigonom 6) the initial value problem. 54) $\frac{d^2y}{dx^2} = 3e^{-x}$, $y(0) = 1$, $y'(0) = 0$ A) $y = 3e^{-x} - 3x + 4$ B) $y = -3$. Express the value of the inverse hyperbolic function. 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ b) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\ln\frac{1}{2}$ c) $\frac{1}{2}$ c) $\frac{1}{2}$	-x + C C) y = 3e-x + action in terms of natural log C) ln 2 9	-3x - 2 D) y = 3e garithms. D) ln (4)	54) e=x + 1 55) find the value of the	_
A) $y = 3e^{-x} - 3x + 4$ B) $y = -3i$ Express the value of the inverse hyperbolic function 55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ b) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ b) $\ln \frac{1}{2}$ b) $\ln \frac{1}{2}$ b) $\ln \frac{1}{2}$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ b) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ b) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ b) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ b) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ b) $\ln\left(\frac{1}{2} + \sqrt{10}\right)$ c)	C) ln 2 G) ln 2 9	parithms. D) ln (4)	find the value of the	_
Express the value of the inverse hyperbolic furcts 55 $\sinh^{-1}\left[\frac{-3}{4}\right]$ A) $\ln\left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A) $\ln\left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A) $\ln\left[\frac{-3}{4} + \sqrt{10}\right]$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the different distribution of the second secon	C) ln 2 G) ln 2 9	parithms. D) ln (4)	55)	_
55) $\sinh^{-1}\left(\frac{-3}{4}\right)$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A) $\ln\left(\frac{-3}{4} + \sqrt{10}\right)$ B) $\ln \frac{1}{2}$ A value of sinh x or cosh x is given. Use the different distribution of the second se	C) In 2 9 finitions and the identity co	D) ln (4)	find the value of the	_
Avalue of sinh x or cosh x is given. Use the d ther indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	9 finitions and the identity co			
Avalue of sinh x or cosh x is given. Use the d ther indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	finitions and the identity co	sh2 x - sinh2 x = 1 to		
ther indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ ind the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ tewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$		$sh^2 x - sinh^2 x = 1$ to		
ther indicated hyperbolic function. 64) $\cosh x = \frac{13}{5}$, $x < 0$, $\coth x =$ A) $-\frac{5}{13}$ B) $\frac{12}{13}$ Find the limit. 65) $\lim_{x \to \infty} \cot^{-1} x$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$				1
A) $-\frac{5}{13}$ B) $\frac{12}{13}$ ind the limit. 65) $\lim_{X \to \infty} \cot^{-1} X$ A) 0 B) ∞ tewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	C) - <u>13</u> 12			
Find the limit. 65) $\lim_{X\to\infty} \cot^{-1} X$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$	12	D) $-\frac{12}{5}$		-
65) $\lim_{X\to\infty} \cot^{-1} X$ A) 0 B) ∞ Rewrite the following without using trigonom 66) $\cos(\sin^{-1} u)$		5		
Rewrite the following without using trigonom 66) cos(sin ⁻¹ u)			65)	-
66) cos(sin ⁻¹ u)	C) $\frac{\pi}{2}$	D) π		
· · · ·	etric or inverse trigonometri	c functions.		
- VI u	C) $\frac{\sqrt{u^2+1}}{u}$	D) $\sqrt{u^2}$ +	66)	-
evaluate the integral.	' u			
67) $\int \frac{dx}{\sqrt{-x^2 - 8x - 15}}$			67)	_
A) $-\sin^{-1}(x+4) + C$	B) $\frac{1}{2}\sqrt{-x^2}$ -	8x - 15+ C		
C) $\sin^{-1}(x+4) + C$	D) cos=1 (x +			
Solve the initial value problem. 68) $\frac{dy}{dt} = e^{-t} \sec^2(\pi e^{-t}), y(-\ln 7) = \frac{2}{\pi}$			68)	
A) $y = \cot(\pi e^{-t}) + 2$	B) $y = \frac{\tan(\pi)}{2}$	$\frac{e^{-t}}{\pi}$		
C) $y = \frac{-e^{-t}\cot(\pi e^{-t}) + 1}{\pi}$	D) $y = -tan (x)$			
π ind the limit.				
69) $\lim_{x \to 0} \frac{\tan^{-1} 8x^2}{7x^2}$				

56) 6 ln √e				56)
A) 6	B) 1	C) $\frac{1}{6}$	D) e	
Answer the question appropr				
57) Find the absolute m A) 2.3 – 2.3 ln 2.3	aximum value of $f(x) = e^{x}$. B) 2.3 - ln 2.3	- 2.3x on [0, 2]. C) e ² - 4.6	D) 1	57)
A) 2.3 – 2.3 in 2.3	B) 2.3 - In 2.3	C) e ² - 4.6	D) 1	
value of sinh x or cosh x is t ther indicated hyperbolic fu		and the identity cosh ²	$x - \sinh^2 x = 1$ to find	the value of the
58) $\cosh x = \frac{17}{8}, x < 0, s$	sech x =			58)
A) $\frac{15}{17}$	B) $-\frac{289}{4}$	C) $\frac{8}{17}$	D) $-\frac{8}{15}$	
17 17	64	^(c) 17	15	
Determine whether the integ	ration formula is correct.			
59) $\int \operatorname{coth}^{-1} \sqrt{x} dx =$	$(x - 1)$ coth ⁻¹ $\sqrt{x} + \sqrt{x} + C$			59)
A) No		B) Yes		
60) $\int 2x \ln(1 + x^2) dx =$	= (1 + x ²) ln (1 + x ²) - (1 + x ²)	(2) + C		60)
A) No		B) Yes		
ind the limit.				
61) $\lim_{x \to -1^+} \cos^{-1} x$				61)
Α) π	B) 1	C) -1	D) 0	
valuate the integral.				
$\int \ln \sqrt{3}/3 {}_{3} {}_{6} {}^{3x} {}_{dx}$				
62) $\int_{0}^{\ln\sqrt{3}/3} \frac{3 e^{3x} dx}{1 + e^{6x}}$	-			62)
A) $-\frac{\pi}{c}$	p) π	C) ^π	D) $-\frac{\pi}{12}$	
$A) = \frac{1}{6}$	B) $\frac{\pi}{12}$	C) $\frac{\pi}{6}$	0) - 12	
olve the problem.				
63) Find the equation the $\frac{dy}{dx} = 5 + \frac{1}{x}$, $y(1) = 1$	at satisfies the following co 2	onditions:		63)
A) $y = \ln x + 12$		B) $y = x + \ln x $	+ 11	
C) $y = 5x + \ln x +$	6	D) $y = 5x + \ln x $	+ 7	

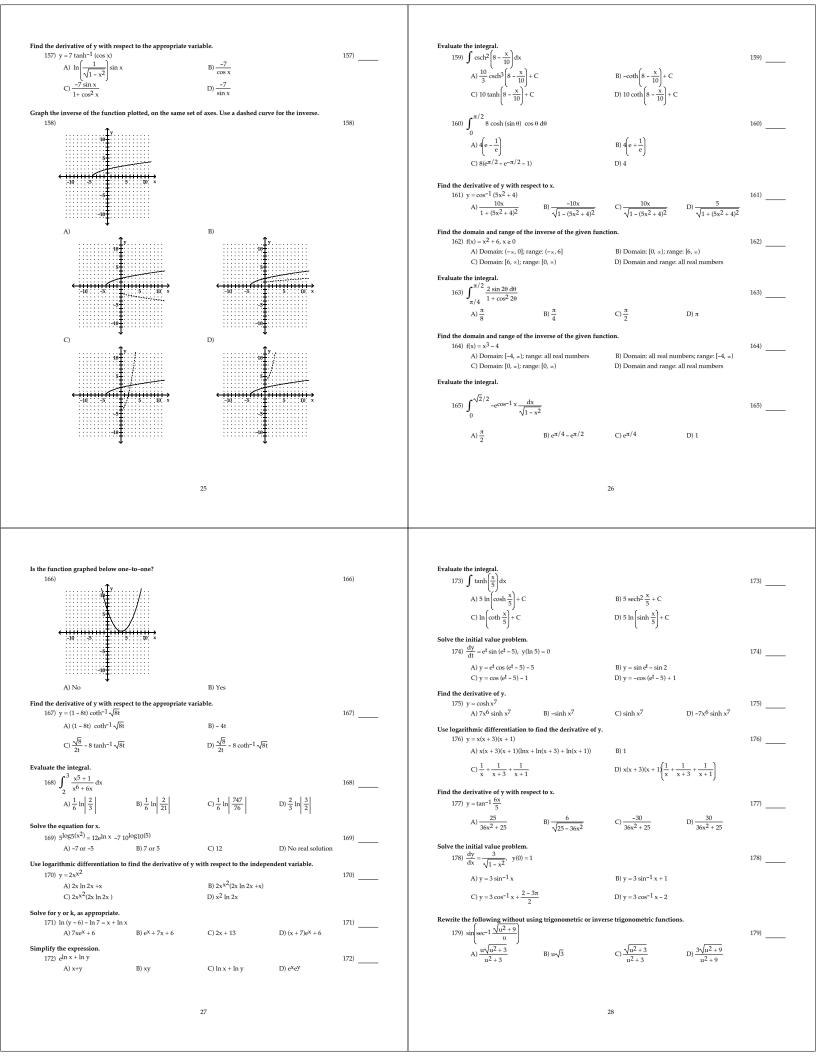
Use logarithmic differentiation 71) $y = (\cos x)^{\chi}$	n to find the derivative of y	with respect to the ind	ependent variable.	71)
A) $\ln \cos x - x \tan x$	c	B) (cos x) ^x (ln cos x	- x tan x)	
C) (cos x) ^x (ln cos x)	$x + x \cot x$	D) $\ln x(\cos x)x - 1$		
Evaluate exactly. 72) $\sin\left(\cos^{-1}\left(\frac{1}{2}\right)\right)$ A) $\frac{-1}{2}$	B) 1	C) $\frac{-\sqrt{3}}{2}$	D) $\frac{\sqrt{3}}{2}$	72)
Simplify the expression. 73) $9^{\log_3 x}$ A) \sqrt{x}	B) x ²	C) 2	D) 3 ²	73)
n				
Rewrite the expression in term 74) sinh (2 ln 3x)	is of exponentials and simp	iry the results.		74)
A) 6x	B) $\frac{1}{2} \left(9_X^2 - \frac{1}{9_X^2} \right)$	C) $\frac{3}{2}\left(x-\frac{1}{x}\right)$	D) $\frac{1}{2} \left(9x^2 + \frac{1}{9x^2} \right)$	
Find the derivative of y with r 75) $y = \sin^{-1}\left(\frac{6x+9}{11}\right)$	espect to x.			75)
A) $-\frac{6}{\sqrt{121 - (6x + 9)}}$	<u>)</u> 2	$B) \frac{6}{1+(6x+9)^2}$		
C) $\frac{66}{\sqrt{1 + (6x + 9)^2}}$		D) $\frac{6}{\sqrt{121 - (6x + 9)^2}}$	-	
Evaluate the integral.				
$76) \int \frac{\mathrm{d}x}{\sqrt{-x^2 - 10x - 16}}$				76)
A) $\sin^{-1}\left(\frac{x+5}{3}\right) + 6$	2	B) $-\sin^{-1}\left(\frac{x+5}{3}\right) +$	с	
C) $\frac{1}{2}-x^2-10x-10x^2-1$	16+ C	D) $\cos^{-1}\left(\frac{x+5}{3}\right) + 6$	-	
Solve the problem.				
77) The pH of the blood	of a small mammal usually f	alls between 7.24 and 7.	46. Find the	77)
corresponding bound	ds of [H3O ⁺].			
A) log ₁₀ 7.24 and lo	0.00	B) 107.46 and 107.2		
C) 10-7.46 and 10-2	7.24	D) e ^{-7.46} and e ^{-7.2}	4	

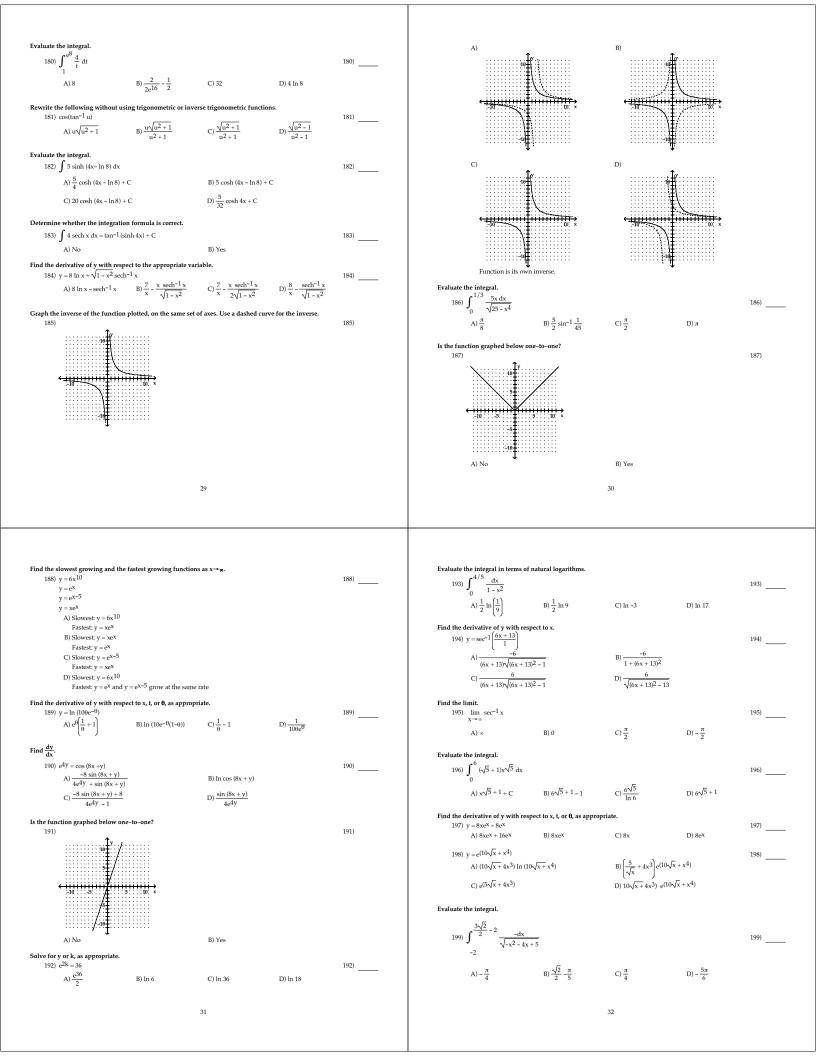
B) $\frac{8}{3}$ sech³ (8x - 2) + C


D) $\frac{1}{8}$ tanh (8x - 2) + C

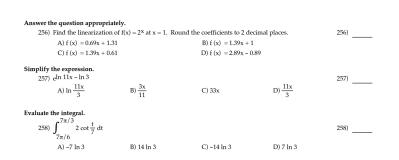
70)

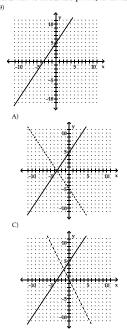
Evaluate the integral. 70) $\int \operatorname{sech}^2 (8x - 2) dx$

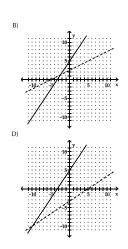

A) $\frac{1}{8}$ coth (8x - 2) + C


C) tanh (8x - 2) + C

blve the problem. 99) Find the area bounded A) 4 ln $\left(\frac{1}{4}\right)$	by xy = 8, x = 1, x = 4, and B) 8 ln (4)	y = 0. C) 8 ln $\left(\frac{1}{4}\right)$	D) ln (4)	99)	Use logarithmic differentiation to $x = \frac{x \cos x}{\sqrt{x+4}}$	find the derivative of y)	106)
se logarithmic differentiation t	to find the derivative of y.	C)			A) $\frac{1}{x} - \tan x - \frac{1}{2x+8}$	1, (.)	B) $\frac{1}{2}\left(\frac{1}{x} + \frac{1}{\cos x} + \frac{1}{x+4}\right)$ D) $\frac{x\cos x}{1}$	īj 1)	
100) $y = \frac{\sin x \cos^4 x \sec x}{x^{1/3}}$,			100)	C) $\frac{\sqrt{\cos x}}{\sqrt{x+4}} \ln x + \ln \cos x$	$\left[-\frac{1}{2}\ln(x+4)\right]$	D) $\frac{x \cos x}{\sqrt{x+4}} \left(\frac{1}{x} - \tan x - \frac{1}{x}\right)$	$\frac{1}{2x+8}$	
A) $\frac{\sin x \cos^4 x \sec x}{x^{1/3}}$ B) $\frac{\sin x \cos^4 x \sec x}{x^{1/3}}$	$ \begin{cases} \cot x + 5\tan x - \frac{1}{3x} \\ \cot x - 4\tan x + \frac{1}{\sin x \cos x} \end{cases} $	_1]			Solve for y or k, as appropriate. 107) $e^{x^2}e^{4x+2} = e^k$ A) $4x^3 + 2x^2$	B) $x^2 + 4x + 2$	C) x ² - 4x - 2	D) $\ln (x^2 + 4x + 2)$	107)
C) $\frac{\sin x \cos^4 x \sec x}{x^{1/3}}$	$\left[2\cot x - 3\tan x - \frac{1}{3x}\right]$	3x)			Solve the problem. 108) The charcoal from a tree living matter. How old is carbon-14.		ption contained 66.8% of the year? Use5700 years for th		108)
D) $\frac{\sin x \cos^4 x \sec x}{x^{1/3}}$	$\left[\cot x - 3\tan x - \frac{3}{3x}\right]$				A) 5700 years	B) 2300 years	C) 3318 years	D) 1594 years	
nd the derivative of y with resp 101) $y = (\ln 8\theta)^{\pi}$ A) $\frac{\pi}{\theta}(\ln 8\theta)^{\pi-1}$	pect to the independent vanishing $\frac{\pi}{8\theta}(\ln 8\theta)^{\pi-1}$	nriable. C) π(ln 8θ) ^{π-1}	D) $(8\theta)^{\pi} \ln \pi$	101)		a particular person, hov	clines at a rate proportional w long will it take for his alc er to the nearest tenth of an h C) 2.3 hr	ohol concentration to	109)
nd the derivative of y with resp 102) $y = \operatorname{csch}^{-1}\left(\frac{1}{8}\right)^{\theta}$	pect to the appropriate var	iable.		102)	Evaluate the integral in terms of na	atural logarithms.			
()	B) $\frac{\left(\frac{1}{8}\right)^{\theta} \ln 8}{\sqrt{1 - \left(\frac{1}{8}\right)^{2\theta}}}$	C) $\frac{\ln \frac{1}{8}}{\sqrt{1-\left(\frac{1}{8}\right)^{2\theta}}}$	D) $\frac{\ln 8}{\sqrt{1-\left(\frac{1}{8}\right)^{2\theta}}}$	102)	110) $\int_{0}^{\sqrt{2}/2} \frac{32 dx}{\sqrt{1 + 16x^2}}$	_			110)
	1 ()	1 (*)	V (°)		A) ln 11	B) 8 ln $(2\sqrt{2} + 3)$	C) 8 ln $(2\sqrt{2} + \sqrt{7})$	D) 32 ln (2 $\sqrt{2}$ + 3)	
etermine whether the integration 103) $\int 9x \sin^{-1} 3x dx = \frac{18}{4}$ A) Yes		$\frac{\overline{c^2}}{c}$ + C B) No		103)	Answer the question appropriately 111) Find the equation for the A) $y = \frac{4x}{e}$		and tangent to $y = \ln 4x$. C) $y = -\frac{ex}{4}$	D) y = e	111
mplify the expression. 104) log ₈ 512				104)	Evaluate the integral. 112) $\int 8x\sqrt{3+5} dx$				112
A) 3	B) 8	C) 24	D) 512		A) $\frac{8x\sqrt{3}+4}{\sqrt{3}+4} + C$	B) $\frac{8x\sqrt{3+6}}{5}$ + C	C) $\frac{8x\sqrt{3}+5}{1}$ + C	D) $\frac{8}{\sqrt{3+6}}$ + C	
blve the equation for x. 105) $2^{\log_2 10} + 4^{\log_4 3} = 8^{\log_4 3}$ A) $\log_{10} 3$	g ₈ x B) 30	C) <u>15</u>	D) 13	105)	$\sqrt{3+4}$ Determine whether the integration 113) $\int 3x \tanh x^2 dx = \frac{3}{2} \ln (x^2 + 1)$	formula is correct.	in x	√3+6	113
					A) No		B) Yes		
		17					18		
ewrite the ratio as a ratio of nat 114 , $\frac{\log x}{\log 5 x}$	tural logarithms and simp			114)	Express as a single logarithm and, 122) ln (x ² - 36) - ln (x + 6) A) ln (x - 36)			D) ln (x + 6)	122
	tural logarithms and simpl $B_{1}\frac{5}{4}$		D) ⁴ / ₅	114)		if possible, simplify. B) ln (x - 6)	C) ln (x ² - 6)	D) ln (x + 6)	122)
114) $\frac{\log_4 x}{\log_5 x}$	B) $\frac{5}{4}$	lífy. C) <u>ln 5</u> <u>ln 4</u>	-	114)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$	B) ln (x - 6)	C) ln (x ² - 6)		
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$	B) $\frac{5}{4}$	lífy. C) <u>ln 5</u> <u>ln 4</u>	-	114) 115)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$		D) ln (x + 6) D) $\frac{5}{3}x^{2}/3$	
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ ewrite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$	B) $\frac{5}{4}$	lífy. C) <u>ln 5</u> <u>ln 4</u>	-		122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$	C) ln (x ² - 6) C) x ^{3/5}		123
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ ewrite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral.	B) $\frac{5}{4}$ using trigonometric or inve	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function	ons.		122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and,	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$	C) ln (x ² - 6)		123)
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ evente the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$	B) $\frac{5}{4}$ using trigonometric or inve	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function	ons.		122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify.	C) ln (x ² - 6) C) x ^{3/5} B) ln (49) D) ln (49 cot θ)		122) 123) 124)
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ ewrite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral.	B) $\frac{5}{4}$ using trigonometric or inve	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function	ons.	115)	$122) \ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left[\frac{4}{3}\right]$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify.	 C) ln (x² - 6) C) x^{3/5} B) ln (49) D) ln (49 cot θ) rrms of natural logarithms. 	D) $\frac{5}{3}x^{2/3}$	123)
$114) \frac{\log_4 x}{\log_5 x}$ $A) \frac{\ln 4}{\ln 5}$ evente the following without use 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ $A) \frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_0^{\ln 5} \cosh x dx$ $A) \frac{12}{5}$	B) $\frac{5}{4}$ using trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$	115)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify.	 C) ln (x² - 6) C) x^{3/5} B) ln (49) D) ln (49 cot θ) rrms of natural logarithms. 		123
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ eventie the following without ut 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{\ln^2 + 5}}{u^2 + 5}$ valuate the integral. 116) $\int_0^{\ln 5} \cosh x dx$	B) $\frac{5}{4}$ using trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$	115)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\cosh^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify.	 C) ln (x² - 6) C) x^{3/5} B) ln (49) D) ln (49 cot θ) rms of natural logarithms. C) ¹/₂ ln 28 B) 2 sinh 8x cosh 8x 	D) $\frac{5}{3}x^{2/3}$	123 124
$114) \frac{\log_4 x}{\log_5 x}$ $A) \frac{\ln 4}{\ln 5}$ eventie the following without ut $115) \sin\left(\sin^{-1} \frac{u}{\sqrt{5}}\right)$ $A) \frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_{0}^{\ln 5} \cosh x dx$ $A) \frac{12}{5}$ eletermine whether the integratation is a substantial to the integrate of the inte	B) $\frac{5}{4}$ using trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$	115)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left(\frac{4}{3}\right)$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respect	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$	C) ln (x ² - 6) C) x ^{3/5} B) ln (49) D) ln (49 cot θ) rms of natural logarithms. C) $\frac{1}{2}$ ln 28 B) 2 sinh 8x cosh 8x D) 2 cosh 8x	D) $\frac{5}{3}x^{2/3}$	123 124 125
$114) \frac{\log_4 x}{\log_5 x}$ $A) \frac{\ln 4}{\ln 5}$ eventie the following without ut $115) \sin\left(\sin^{-1} \frac{u}{\sqrt{5}}\right)$ $A) \frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_{0}^{\ln 5} \cosh x dx$ $A) \frac{12}{5}$ etermine whether the integratities $117) \int \frac{3\tan^{-1} x}{x^2} dx = 3 \ln x$ $A) \operatorname{No}$	B) $\frac{5}{4}$ using trigonometric or inverses B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ tion formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3 \tan^{-1} x}{x}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$	115)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respect 127) $y = \ln \frac{1-x}{(x+2)^4}$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate.	D) $\frac{5}{3}x^{2/3}$ D) $\frac{1}{2}$ ln -7	123 124 125 126
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ ewrite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ raluate the integral. 116) $\int_{0}^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integrati 117) $\int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No raluate the integral.	B) $\frac{5}{4}$ using trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ ion formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3 \tan^{-1} x}{x} + \frac{1}{3}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$	115) 116) 117)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respect 127) $y = \ln \frac{1-x}{(x+2)^4}$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x	D) $\frac{5}{3}x^{2/3}$	123 124 125 126
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ ewrite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ raluate the integral. 116) $\int_{0}^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integrati 117) $\int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No raluate the integral. 118) $\int_{0}^{\sqrt{3}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi 6}{4374}$ by the the equation for x.	B) $\frac{5}{4}$ asing trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ ion formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ + C B) Yes	D) $\frac{w\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$	115) 116) 117) 118)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left(\frac{4}{3}\right)$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respective of y = $\ln \frac{1-x}{(x+2)^4}$ A) $\frac{3x-6}{(x+2)^5}$ Solve for y or k, as appropriate. 128) $e(\ln 0.6)k = 0.4$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ et to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$	D) $\frac{5}{3}x^{2/3}$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)4}{1-x}$	123 124 125 126
$114) \frac{\log_4 x}{\log_5 x}$ $A) \frac{\ln 4}{\ln 5}$ eventie the following without ut $115) \sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ $A) \frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_{0}^{\ln 5} \cosh x dx$ $A) \frac{12}{5}$ etermine whether the integratif $117) \int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ $A) \operatorname{No}$ valuate the integral. $118) \int_{0}^{\sqrt{3}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ $A) \frac{\pi^6}{4374}$	B) $\frac{5}{4}$ asing trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ ion formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x}$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ + C B) Yes	D) $\frac{w\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$	115) 116) 117)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respect 127) $y = \ln \frac{1-x}{(x+2)^4}$ A) $\frac{3x-6}{(x+2)^5}$ Solve for y or k, as appropriate.	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate.	D) $\frac{5}{3}x^{2/3}$ D) $\frac{1}{2}$ ln -7	123 124 125 126
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ eventie the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{\ln^2 + 5}}{u^2 + 5}$ valuate the integral. 116) $\int_{0}^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integratility 117) $\int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No valuate the integral. 118) $\int_{0}^{\sqrt{5}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi 6}{4374}$ by the the equation for x. 119) $3\log_{3}(5) - e\ln 17 = x^2 - A) - 4 \text{ or } -3$ etermine whether the integratility	B) $\frac{5}{4}$ asing trigonometric or inverses B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ for formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x} + \frac{3\tan^{-1}x}{x}$ B) $\ln \frac{\pi 6}{6}$ $\cdot 8^{\log 8}(7x)$ B) 7	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ F C B) Yes C) $\frac{\pi 6}{729}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$ D) $\frac{19}{10}$	115) 116) 117) 118)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\coth^{-1}\left(\frac{4}{3}\right)$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respective of y = $\ln \frac{1-x}{(x+2)^4}$ A) $\frac{3x-6}{(x+2)^5}$ Solve for y or k, as appropriate. 128) $e(\ln 0.6)k = 0.4$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$ B) $\frac{\ln 0.4}{\ln 0.6}$	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$ C) $\ln \frac{2}{3}$	D) $\frac{5}{3}x^{2/3}$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)^4}{1-x}$ D) $\frac{2}{3}$	123 124 125 126 127
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ everite the following without u 115) $\sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. 116) $\int_0^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integration of the integration of the integral. 117) $\int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No valuate the integral. 118) $\int_0^{\sqrt{5}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi^6}{4374}$ bive the equation for x. 119) $3^{\log_3(5)} - e^{\ln 17} = x^2 - A$ A) $-4 \text{ or } -3$	B) $\frac{5}{4}$ asing trigonometric or inverses B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ for formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x} + \frac{3\tan^{-1}x}{x}$ B) $\ln \frac{\pi 6}{6}$ $\cdot 8^{\log 8}(7x)$ B) 7	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ F C B) Yes C) $\frac{\pi 6}{729}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$ D) $\frac{19}{10}$	115) 116) 117) 118)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\cosh^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respe 127) $y = \ln \frac{1 - x}{(x + 2)^4}$ A) $\frac{3x - 6}{(x + 2)^5}$ Solve for y or k, as appropriate. 128) $e^{(\ln 0.6)k} = 0.4$ A) $\frac{e^{0.4}}{\ln 0.6}$ Use logarithmic differentiation to	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ et to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$ B) $\frac{\ln 0.4}{\ln 0.6}$ find the derivative of y	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$ C) $\ln \frac{2}{3}$	D) $\frac{5}{3}x^{2}/3$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)4}{1-x}$ D) $\frac{2}{3}$ ndent variable.	123 124 125 126 127
$114) \frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ eventie the following without u $115) \sin\left(\sin^{-1}\frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{\ln^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_0^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integratif $117) \int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No valuate the integral. $118) \int_0^{\sqrt{5}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi^6}{4374}$ even the equation for x. $119) 3^{\log_3(5)} - e^{\ln 17} = x^2 - A) - 4 \text{ or } - 3$ etermine whether the integratif $120) \int x \operatorname{csch}^{-1} x dx = \frac{x^2}{2} \operatorname{cc}$ A) No	B) $\frac{5}{4}$ asing trigonometric or inverses B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ for formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x} + \frac{3\tan^{-1}x}{x}$ B) $\ln \frac{\pi 6}{6}$ $\cdot 8^{\log 8}(7x)$ B) 7	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ F C B) Yes C) $\frac{\pi 6}{729}$	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$ D) $\frac{19}{10}$	115) 116) 117) 118) 119)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\cosh^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respetence of y with respetence of $(x + 2)^4$ A) $\frac{3x - 6}{(x + 2)^5}$ Solve for y or k, as appropriate. 128) $e(\ln 0.6)k = 0.4$ A) $\frac{e^{0.4}}{\ln 0.6}$ Use logarithmic differentiation to 129) $y = (9x + 10)x$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$ B) $\frac{\ln 0.4}{\ln 0.6}$ find the derivative of y	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$ C) $\ln \frac{2}{3}$	D) $\frac{5}{3}x^{2}/3$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)4}{1-x}$ D) $\frac{2}{3}$ ndent variable.	123 124 125 126 127 128
114) $\frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ evente the following without u 115) $\sin\left(\frac{\sin^{-1} \frac{u}{\sqrt{5}}}{u^2 + 5}\right)$ valuate the integral. 116) $\int_{0}^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integratit 117) $\int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No valuate the integral. 118) $\int_{0}^{\sqrt{3}/2} \frac{(\sin^{-1} x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi^6}{4374}$ obve the equation for x. 119) $3\log_3(5) - e\ln 17 = x^2 - A) - 4 \text{ or } -3$ etermine whether the integratit 120) $\int x \operatorname{csch}^{-1} x dx = \frac{x^2}{2} \operatorname{cc}^{-1} A) \operatorname{No}^{-1} x dx$	B) $\frac{5}{4}$ asing trigonometric or inverses B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ for formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1}x}{x} + \frac{3\tan^{-1}x}{x}$ B) $\ln \frac{\pi 6}{6}$ $\cdot 8^{\log 8}(7x)$ B) 7	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ C) $\frac{24}{5}$ E) Yes C) $\frac{\pi 6}{729}$ C) 4 or 3	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$ D) $\frac{19}{10}$	115) 116) 117) 118) 119) 120)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\cosh^{-1}\left[\frac{4}{3}\right]$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respect 127) $y = \ln \frac{1 - x}{(x + 2)^4}$ A) $\frac{3x - 6}{(x + 2)^5}$ Solve for y or k, as appropriate. 128) $e(\ln 0.6)k = 0.4$ A) $\frac{e^{0.4}}{\ln 0.6}$ Use logarithmic differentiation to 129) $y = (9x + 10)x$ A) $\ln (9x + 10) + \frac{9x}{9x + 10}$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$ B) $\frac{\ln 0.4}{\ln 0.6}$ find the derivative of y $\frac{5}{10}$	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$ C) $\ln \frac{2}{3}$ r with respect to the indepee B) $(9x + 10)^{x} [\ln (9x + 1)]$	D) $\frac{5}{3}x^{2}/3$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)4}{1-x}$ D) $\frac{2}{3}$ ndent variable.	123 124 125 126 127
$114) \frac{\log_4 x}{\log_5 x}$ A) $\frac{\ln 4}{\ln 5}$ everifie the following without u $115) \sin\left(\sin^{-1} \frac{u}{\sqrt{5}}\right)$ A) $\frac{\sqrt{u^2 + 5}}{u^2 + 5}$ valuate the integral. $116) \int_{0}^{\ln 5} \cosh x dx$ A) $\frac{12}{5}$ etermine whether the integrati $117) \int \frac{3\tan^{-1}x}{x^2} dx = 3 \ln x$ A) No valuate the integral. $118) \int_{0}^{\sqrt{5}/2} \frac{(\sin^{-1}x)^5}{\sqrt{1 - x^2}} dx$ A) $\frac{\pi 6}{4374}$ etermine whether the integrati $119) 3^{\log_3(5)} - e^{\ln 17} = x^2 - A) - 4 \text{ or } -3$ etermine whether the integrati $120) \int x \operatorname{csch}^{-1}x dx = \frac{x^2}{2} \operatorname{cc}$ A) No valuate the integral. $121) \int r\sqrt{10-1} dt$	B) $\frac{5}{4}$ asing trigonometric or inverse B) $\frac{u\sqrt{5}}{5}$ B) $-\frac{19}{10}$ ion formula is correct. $-\frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1} x}{x} + \frac{3}{2} \ln (1 + x^2) - \frac{3\tan^{-1} x}{x} + \frac{3}{2} \ln (1 + x^2) + 3$	lify. C) $\frac{\ln 5}{\ln 4}$ rse trigonometric function C) $u\sqrt{5}$ C) $\frac{24}{5}$ C) $\frac{24}{5}$ E) Yes C) $\frac{\pi 6}{729}$ C) 4 or 3	D) $\frac{u\sqrt{u^2-5}}{u^2-5}$ D) $\frac{19}{10}$ D) $\frac{19}{10}$	115) 116) 117) 118) 119)	122) $\ln (x^2 - 36) - \ln (x + 6)$ A) $\ln (x - 36)$ Find the formula for df-1/dx. 123) $f(x) = x^{5/3}$ A) $x^{2/5}$ Express as a single logarithm and, 124) $\ln (7 \sec \theta) + \ln (7 \cos \theta)$ A) $\ln (1)$ C) $\ln (7 \sec \theta + 7 \cos \theta)$ Express the value of the inverse hy 125) $\cosh^{-1}\left(\frac{4}{3}\right)$ A) 0 Find the derivative of y. 126) $y = \sinh^2 8x$ A) 16 $\cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ C) 16 $\sinh 8x \cosh 8x$ Find the derivative of y with respe 127) $y = \ln \frac{1-x}{(x+2)^4}$ A) $\frac{3x-6}{(x+2)^5}$ Solve for y or k, as appropriate. 128) $e(\ln 0.6)k = 0.4$ A) $\frac{e^{0.4}}{\ln 0.6}$ Use logarithmic differentiation to 129) $y = (9x + 10)x$ A) $\ln (9x + 10) + \frac{9x}{9x + 10}$ C) $(9x + 10)x \left[\ln (9x + 10) + \frac{9x}{9x + 10}\right]$	B) $\ln (x - 6)$ B) $\frac{3}{5}x^{-2/5}$ if possible, simplify. perbolic function in te B) $\frac{1}{2} \ln 7$ ct to x, t, or θ , as approp B) $\ln \frac{5x - 6}{(x + 2)^5}$ B) $\frac{\ln 0.4}{\ln 0.6}$ find the derivative of y $\frac{5}{10}$	C) $\ln (x^2 - 6)$ C) $x^{3/5}$ B) $\ln (49)$ D) $\ln (49 \cot \theta)$ rms of natural logarithms. C) $\frac{1}{2} \ln 28$ B) 2 sinh 8x cosh 8x D) 2 cosh 8x priate. C) $\frac{3x - 6}{(x + 2)(1 - x)}$ C) $\ln \frac{2}{3}$ r with respect to the indepee B) $(9x + 10)^{x} [\ln (9x + 1)]$	D) $\frac{5}{3}x^{2}/3$ D) $\frac{1}{2} \ln -7$ D) $\frac{(x+2)4}{1-x}$ D) $\frac{2}{3}$ ndent variable.	123) 124)


luate the integral in terms of natural logarithms. 131) $\int_{0}^{9\pi} \frac{-\sin x dx}{\sqrt{1 + \cos^2 x}}$			131)	Evaluate the integral. 138) $\int \frac{(\sin^{-1} x)^3}{\sqrt{1-x^2}} dx$				
A) -2 B) $\ln \left(\frac{-1 + \sqrt{2}}{1 + \sqrt{2}}\right)$	C) ln 2	D) 0		4 · · ·	B) $3(\sin^{-1} x)^2 + C$	$C)\frac{(\sin^{-1}x)^4}{4} + C$	$D) \frac{\ln (\sin x)}{\sqrt{1 - x^2}} + C$	
he derivative of y. 32) $y = \operatorname{csch} \frac{12x}{15}$			132)	Solve the problem. 139) The velocity of <u>a bo</u> dy	of mass m falling from res	st under the action of grav	vity is given by the	
A) $\frac{12}{15}$ csch $\frac{12x}{15}$ coth $\frac{12x}{15}$	B) $-\operatorname{csch} \frac{12x}{15} \operatorname{coth} \frac{12x}{15}$	x			$h\left(\sqrt{\frac{gk}{m}t}\right)$, where k is a cor			
C) $-\frac{12}{15}\operatorname{csch}\frac{12x}{15}\operatorname{coth}\frac{12x}{15}$	D) csch $\frac{12x}{15}$ coth $\frac{12x}{15}$				sity of the air, g is the gra- imiting velocity, $\lim_{t\to\infty}$			
10 10 10	15 15			A) 0.01 ft/sec C) There is no limitir	g speed.	 B) 182.57 ft/sec D) 57.74 ft/sec 		
 e the problem. 133) The intensity L(x) of light x ft beneath the surface ^{dL}/_{dx} = - 0.09L. At what depth, to the nearest foot, 			133)	Is the function graphed below o		_,,		
surface? A) 13 ft B) 17 ft	C) 26 ft	D) 38 ft						
134) The solid lies between planes perpendicular to th			134)					
are squares whose diagonals stretch from the x-a A) $\frac{75}{2}\pi$ B) $\frac{25}{6}\pi$				-10	5 100. ×			
logarithmic differentiation to find the derivative of y	with respect to the indepe	endent variable.						
135) $y = (\ln x) \ln x$ A) $\frac{\ln (\ln x) + 1}{x}$	B) $\frac{(\ln x)\ln x}{x}$		135)	A) Yes		B) No		
				Solve for y or k, as appropriate.				
C) $\left(\frac{\ln (\ln x) + 1}{x}\right) (\ln x)^{\ln x}$	D) ln x ln (ln x)			141) $e^{k/970} = t$ A) 970 e^{t}	B) $\frac{\ln t}{970}$	C) ln 970t	D) 970 ln t	1
the value of df ⁻¹ /dx at x = f(a). 126) $f(x) = \frac{1}{2}x + 6$ a = 2			126)		9/0			
136) $f(x) = \frac{1}{5}x + 6$, $a = 3$ A) 6 B) $\frac{1}{5}$	C) $\frac{1}{6}$	D) 5	136)	142) $e\sqrt{k} = x^4$ A) (ln x ⁸)	B) 16(ln x) ²	C) $\sqrt{4 \ln x}$	D) x ⁸	1
Ŭ	$c_{1}\overline{6}$	D) 5		Express as a single logarithm an $(\cos \theta)$	d, if possible, simplify.			
the inverse of the function. 137) $f(x) = (x - 7)^2, x \ge 7$			137)	143) $\ln \cos \theta - \ln \left(\frac{\cos \theta}{6} \right)$			(20)	1
A) $f^{-1}(x) = \sqrt{x - 7}, x \ge 7$ C) $f^{-1}(x) = -\sqrt{x} + 7, x \ge 0$	B) Not a one-to-one f D) f ⁻¹ (x) = √x + 7, x ≥			A) $\ln\left(\frac{1}{6}\right)$	B) ln cos θ	C) ln 6	D) $\ln \left(\frac{\cos^2 \theta}{6} \right)$	
	21					22		
				Evaluate the integral in terms of	natural logarithms.	22		
144) An oil storage tank can be described as the volum	e generated by revolving		144)	Evaluate the integral in terms of 150) $\int_{6/5}^{3/2} \frac{dx}{1-x^2}$	natural logarithms.	22		1
	e generated by revolving		144)		natural logarithms. B) $\ln\left(\frac{3}{11}\right)$	22 C) ln 2	$D)\frac{1}{2}\ln\left(\frac{2}{11}\right)$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the } x-axis$ A) 0.770 m ³ B) 457 m ³ the angle.	e generated by revolving s. Find the volume (in m ³)) of the tank.		150) $\int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral.			$D)\frac{1}{2}\ln\left(\frac{2}{11}\right)$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the } x-axis$ A) 0.770 m ³ B) 457 m ³ the angle.	e generated by revolving s. Find the volume (in m ³)) of the tank.	144) 145)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$			$D)\frac{1}{2}\ln\left(\frac{2}{11}\right)$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given function for the first sector for the sector function.	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$) of the tank. D) 18.5 m ³		$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral. 151) $\int_{\ln 2}^{\ln 6} \frac{6e^{2}\cosh t}{6e^{2}\cosh t} dt$ A) 12 + 3 ln 3	$B) \ln\left(\frac{3}{11}\right)$ $B) 48 + 3 \ln 3$	C) ln 2 C) 60 + 3 ln 12	D) $\frac{1}{2} \ln \left(\frac{2}{11}\right)$ D) 48 + ln 4	
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) - $\frac{\pi}{4}$ B) - $\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) = $\frac{1}{6}x - 8$	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction.) of the tank. D) 18.5 m ³		$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} e^{4} \cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation	$B) \ln\left(\frac{3}{11}\right)$ $B) 48 + 3 \ln 3$	C) ln 2 C) 60 + 3 ln 12		
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) - $\frac{\pi}{4}$ B) - $\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) = $\frac{1}{6}x - 8$ A) Domain: (- <i>x</i> , 6) \cup (6, <i>x</i>); range: all real numb B) Domain: (- <i>x</i> , 8) \cup (8, <i>x</i>); range: (- <i>x</i> , 6) \cup (6, <i>z</i>)	The generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction.) of the tank. D) 18.5 m ³	145)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} e^{4} \cosh t \ dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y	C) ln 2 C) 60 + 3 ln 12	D) 48 + ln 4	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) col ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) $f(x) = \frac{1}{6}x - 8$ A) Domain: (-x, 6) \cup (6, x); range: all real numb	The generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction.) of the tank. D) 18.5 m ³	145)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} e^{k} cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y	C) ln 2 C) 60 + 3 ln 12 Z. B) $\frac{1}{3} \sqrt[3]{\frac{x(x-7)}{x^4 + 5}} \frac{1}{x} + \frac{1}{x}$	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) - $\frac{\pi}{4}$ B) - $\frac{3\pi}{4}$ the domain and range of the inverse of the given fun- 146) f(x) = $\frac{1}{6}x - 8$ A) Domain: (- $x, 6$) \cup (6, x); range: (all real numb B) Domain: (- $x, 6$) \cup (6, x); range: (- $x, 6$) \cup (6, x) C) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x)	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. here s c)) of the tank. D) 18.5 m ³	145) 146)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} e^{k} \cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{1}{x^3})$	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5))$	C) ln 2 C) 60 + 3 ln 12	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) $= \frac{1}{6}x - 8$ A) Domain: $(-x, 6) \cup (6, x)$; range: all real numb B) Domain: $(-x, 6) \cup (6, x)$; range: $(-x, 6) \cup (6, x)$ C) Domain and range: $(-x, 6) \cup (6, x)$ D) Domain and range: $(-x, 6) \cup (6, x)$ Hard product of y. 147) $y = \frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3}$	the generated by revolving s. Find the volume (in m ³ ; C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. pers c)) of the tank. D) 18.5 m^3 D) $\frac{\pi}{4}$	145)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} \cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation $152) y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{5}$ Find the derivative of y with res $153) y = 3 \sin^{-1}(4x^4)$	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5))$ pect to x.	C) ln 2 C) 60 + 3 ln 12 The second state of the second state of	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) - $\frac{\pi}{4}$ B) - $\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) = $\frac{1}{6}x - 8$ A) Domain: (- x , 6) \cup (6 , z); range: all real numb B) Domain: (- x , 8) \cup (8 , z); range: (- x , 6) \cup (6 , z) C) Domain and range: (- x , 6) \cup (6 , z) D) Domain and range: all real numbers ogarithmic differentiation to find the derivative of y.	the generated by revolving s. Find the volume (in m ³ ; C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. pers c)) of the tank. D) 18.5 m^3 D) $\frac{\pi}{4}$	145) 146)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} 6e^{4}\cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation $152) \ y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{3}(\ln x + \ln(x-7))$	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5))$ pect to x.	C) ln 2 C) 60 + 3 ln 12 Z. B) $\frac{1}{3} \sqrt[3]{\frac{x(x-7)}{x^4 + 5}} \frac{1}{x} + \frac{1}{x}$	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$	1
A) 0.770 m ³ B) 457 m ³ It he angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ It he domain and range of the inverse of the given fun 146) f(x) $=\frac{1}{6}x - 8$ A) Domain: (- ∞ , 6) \cup (6, ∞); range: all real numb B) Domain (- ∞ , 8) \cup (8, ∞); range: (- ∞ , 6) \cup (6, ∞ C) Domain and range: (- ∞ , 6) \cup (6, ∞) D) Domain and range: all real numbers logarithmic differentiation to find the derivative of y. 147) $y = \frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} \left[n x + \frac{1}{2} ln(x^5 + 3) - \frac{2}{3} ln(x + 8) \right]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. bers b) B) ln x + $\frac{1}{2}$ ln(x ⁵ + 3) ·) of the tank. D) 18.5 m^3 D) $\frac{\pi}{4}$ $-\frac{2}{3}\ln(x+8)$	145) 146)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left[-\frac{2}{11} \right]$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} 6e^{l}\cosh t dt$ In 2 A) $12 + 3 \ln 3$ Use logarithmic differentiation 1 152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{3}(\ln x + $	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5))$ pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$	C) ln 2 C) 60 + 3 ln 12 r. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{3}\right]$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{3}\right]$ C) $\frac{3}{\sqrt{1-16x^8}}$	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) $=\frac{1}{6}x - 8$ A) Domain: (- <i>x</i> , 8) \cup (8, <i>x</i>); range: all real numb B) Domain: (- <i>x</i> , 8) \cup (6, <i>x</i>); range: (- <i>x</i> , 6) \cup (6, <i>x</i>) C) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain to find the derivative of <i>y</i> . 147) $y = \frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} [n x + \frac{1}{2} ln(x^5 + 3) - \frac{2}{3} ln(x + 8)]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$ the derivative of <i>y</i> with respect to <i>x</i> .	te generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. Pers a) B) ln x + $\frac{1}{2}$ ln(x ⁵ + 3)) of the tank. D) 18.5 m^3 D) $\frac{\pi}{4}$ $-\frac{2}{3}\ln(x+8)$	145) 146)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} e^{3} e^{5} e^{5} t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation of the second s	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5)$) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ ion that is perpendicular to wn inverse. If it is perpendicular	C) ln 2 C) 60 + 3 ln 12 The second state of the second state of	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own	1
(44) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{640 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. (45) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun (46) f(x) = $\frac{1}{6}x - 8$ A) Domain: (- x , 6) \cup (6, x); range: all real numb B) Domain: (- x , 6) \cup (6, x); range: (- x , 6) \cup (6, x) C) Domain and range: (- x , 6) \cup (6, x) D) Domain and range: (- x , 6) \cup (6, x) D) Domain and range: (- x , 6) \cup (6, x) C) Domain and range: (- x , 6) \cup (7, x) (-) $\frac{1}{2}x^{\sqrt{x^5 + 3}}$ A) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^{2/3}}$ A) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^{2/3}} [\ln x + \frac{1}{2}\ln(x^5 + 3) - \frac{2}{3}\ln(x + 8)]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$ the derivative of y with respect to x. (48) $y = \sin^{-1}[\frac{1}{x^3}]$	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) + 3$ D) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^{2/3}} \left[\frac{1}{x} + \frac{5}{2x^3} \right]$) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ $-\frac{2}{3}\ln(x+8)$ $\frac{5x4}{5+6} - \frac{2}{3x+24}$	145) 146) 147)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} 6e^{4}\cosh t dt$ In 2 A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{3}(\ln x + \ln(x-7) - \frac{4x^3}{\sqrt{1-16x^4}})$ Find the derivative of y with ress 153) $y = 3 \sin^{-1}(4x^4)$ A) $\frac{48x^3}{\sqrt{1-16x^4}}$ Solve the problem. 154) Consider a linear funct inverse? Explain. A) Yes it will be its or x. Therefore it is B) Yes it will be its or x.	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5))$ pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ tion that is perpendicular the two inverse. If it is perpendicular the two inverses is a second s	C) ln 2 C) 60 + 3 ln 12 The second system of the system	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ In function be its own netric with respect to y = nverses.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{640 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun- 146) f(x) $=\frac{1}{6}x - 8$ A) Domain: (- <i>x</i> , 8) \cup (6, <i>x</i>); range: all real numb B) Domain: (- <i>x</i> , 8) \cup (6, <i>x</i>); range: (- <i>x</i> , 6) \cup (6, <i>x</i>) C) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (6, <i>x</i>) D) Domain and range: (- <i>x</i> , 6) \cup (5, <i>x</i>) C) $\frac{1}{2}x + \frac{5x^2}{(x + 8)^2/3}$ A) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} [n x + \frac{1}{2}ln(x^5 + 3) - \frac{2}{3}ln(x + 8)]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$ the derivative of y with respect to x.	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) + 3$ D) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^{2/3}} \left[\frac{1}{x} + \frac{5}{2x^3} \right]$) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ $-\frac{2}{3}\ln(x+8)$ $\frac{5x4}{5+6} - \frac{2}{3x+24}$	145) 146) 147)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln\left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 6}^{\ln 6} 6^{4} \cosh t dt$ In 2 A) $12 + 3 \ln 3$ Use logarithmic differentiation that 152 y = $\sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{4x^3}{x^4+5})$ (C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{4x^3}{x^4+5})$ Find the derivative of y with rest 153) y = 3 \sin^{-1}(4x^4) A) $\frac{48x^3}{\sqrt{1-16x^4}}$ Solve the problem. 154) Consider a linear funct inverse? Explain. A) Yes it will be its or x. Therefore it is is B) Yes it will be its or (C) No it won't be its.	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5)$) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ ion that is perpendicular i win inverse. If it is perpention is perpendicular is perpendicular inverse.	C) ln 2 C) 60 + 3 ln 12 d. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+1\right]$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{2}\right]$ C) $\frac{3}{\sqrt{1-16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry in the same but the y-it is symmetry in the y-it is sy	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) $=\frac{1}{6}x - 8$ A) Domain: (- $x, 6$) \cup (6, x); range: all real numb B) Domain: (- $x, 6$) \cup (6, x); range: (- $x, 6$) \cup (6, x) C) Domain and range: (- $x, 6$) \cup (6, x) D) $(-1, x) + (-1, x)$	the generated by revolving s. Find the volume (in m ³): C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) +$) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ $\frac{-\frac{2}{3}\ln(x+8)}{\frac{5x4}{5+6}-\frac{2}{3x+24}}$ D) $\frac{-3}{1+x^6}$	145) 146) 147)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{6}{6} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{6}{3} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{1}{3} (\ln x + \ln(x-7) - \frac{4x^3}{x^4 + 5})$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{4x^3}{x^4 + 5})$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{1}{3} \cosh \frac{48x^3}{\sqrt{1 - 16x^4}})$ Find the derivative of y with res Is $\int_{\pi}^{150} y = 3 \sin^{-1} (4x^4)$ A) $\frac{48x^3}{\sqrt{1 - 16x^4}}$ Solve the problem. 154) Consider a linear funct inverse? Explain. A) Ye sit will be its or x. Therefore it is i B) Ye sit will be its or (C) No it worth be its. D) No it worth be its.	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5)$) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ ion that is perpendicular to wn inverse. If it is perpendicular to wn inverse. All perpendicular to wn inverse. All perpendicular to wn inverse. The slope with the statement of the state	C) ln 2 C) 60 + 3 ln 12 d. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+1\right]$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{2}\right]$ C) $\frac{3}{\sqrt{1-16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry in the same but the y-it is symmetry in the y-it is sy	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) $=\frac{1}{6}x - 8$ A) Domain: (- ∞ , 6) \cup (6, ∞); range: all real numb B) Domain: (- ∞ , 8) \cup (8, ∞); range: (- ∞ , 6) \cup (6, ∞) D) Domain and range: (- ∞ , 6) \cup (6, ∞) D) (6, ∞ , 7) $-\frac{2}{3} \ln(\alpha + \beta)$ D) $(-\frac{3}{3} \ln(\alpha + \beta)$	te generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) + \frac{1}{2x^3}$ D) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^{2/3}} \left[\frac{1}{x} + \frac{5}{2x^3} + \frac{5}{2x^3} - \frac{1}{x\sqrt{1 - x^6}} + \frac{5}{x\sqrt{1 - x^6}} + \frac{1}{x\sqrt{1 - x^6}} + \frac{1}{x1 - x^6$) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ D) $\frac{\pi}{4}$ $\frac{2}{3}\ln(x+8)$ $\frac{5x4}{5+6} - \frac{2}{3x+24}$ D) $\frac{-3}{1+x^6}$ ty is given by the body's aerodynamic	145) 146) 147) 148)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{10}^{10} \frac{6}{6} e^{2} \cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{3}(\ln x + \ln($	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5)$) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ ion that is perpendicular 1 wn inverse. If it is perpendicular 1 wn inverse. All perpendicular 1 wn inverse. All perpendicular 1 wown inverse. Its inverse w	C) ln 2 C) 60 + 3 ln 12 d. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+1\right]$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{2}\right]$ C) $\frac{3}{\sqrt{1-16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry in the same but the y-it is symmetry in the y-it is sy	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ 14b angle. 145) cot ⁻¹ (-1) A) $-\frac{\pi}{4}$ B) $-\frac{3\pi}{4}$ 14b domain and range of the inverse of the given fun- 146) f(x) $= \frac{1}{6}x - 8$ A) Domain: (-x, 6) \cup (6, ∞); range: all real numb B) Domain: (-x, 8) \cup (8, ∞); range: (-x, 6) \cup (6, ∞) C) Domain and range: (-x, 6) \cup (6, ∞) D) Domain and range: all real numbers logarithmic differentiation to find the derivative of y. 147) $y = \frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} [n x + \frac{1}{2} ln(x^5 + 3) - \frac{2}{3} ln(x + 8)]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$ 14 the derivative of y with respect to x. 148) $y = sin^{-1} [\frac{1}{x^3}]$ A) $\frac{-3\pi}{x\sqrt{x^6 - 1}}$ B) $\frac{-3x^3}{\sqrt{1 - x^6}}$ 14 the problem. 149) The velocity of a body of mass m falling from res	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) - \frac{1}{2x^3}$ D) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} \left(\frac{1}{x} + \frac{5}{2x^3} - \frac{1}{2x^3}\right)$ C) $\frac{-3}{x\sqrt{1 - x^6}}$ the under the action of gravilistant that depends on the lititational constant, and t is	b) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ D) $\frac{\pi}{4}$ $\frac{-\frac{2}{3}\ln(x+8)}{\frac{5x^4}{5+6} - \frac{2}{3x+24}}$ D) $\frac{-3}{1+x^6}$ ty is given by the body's aerodynamic the number of seconds	145) 146) 147) 148)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 2}^{\ln 6} \frac{6}{6} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{6}{6} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{6}{3} \cosh t dt$ Is $\int_{\ln 2}^{\ln 6} \frac{1}{3} (\ln x + \ln(x-7) - \frac{4x^3}{x^4 + 5})$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{4x^3}{x^4 + 5})$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{1}{3} \cosh \frac{48x^3}{\sqrt{1 - 16x^4}})$ Find the derivative of y with res Is $\int_{\pi}^{150} y = 3 \sin^{-1} (4x^4)$ A) $\frac{48x^3}{\sqrt{1 - 16x^4}}$ Solve the problem. 154) Consider a linear funct inverse? Explain. A) Ye sit will be its or x. Therefore it is i B) Ye sit will be its or (C) No it worth be its. D) No it worth be its.	B) $\ln\left(\frac{3}{11}\right)$ B) 48 + 3 ln 3 to find the derivative of y $\ln(x^4 + 5)$) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ ion that is perpendicular 1 wn inverse. If it is perpendicular 1 wn inverse. All perpendicular 1 wn inverse. All perpendicular 1 wown inverse. Its inverse w	C) ln 2 C) 60 + 3 ln 12 d. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+1\right]$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4+5}}\left[\frac{1}{x}+\frac{1}{2}\right]$ C) $\frac{3}{\sqrt{1-16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry in the same but the y-it is symmetry in the y-it is sy	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{64.0 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) - $\frac{\pi}{4}$ B) - $\frac{3\pi}{4}$ the domain and range of the inverse of the given function of the giv	the generated by revolving s. Find the volume (in m ³); C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) \cdot$ D) $\frac{x\sqrt{x^5 + 3}}{(x + 8)^2/3} \left(\frac{1}{x} + \frac{5}{2x^3}\right)$ C) $\frac{-3}{(x + 8)^2/3} \left(\frac{1}{x} + \frac{5}{2x^3}\right)$ t under the action of gravil stant that depends on the l itational constant, and t is <i>i</i> , <i>i</i> , of a 320 lb. skydiver (mg B) 73.03 ft/sec	b) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ D) $\frac{\pi}{4}$ $\frac{-\frac{2}{3}\ln(x+8)}{5x^4 - \frac{2}{3x+24}}$ D) $\frac{-3}{1+x^6}$ ty is given by the body's aerodynamic the number of seconds s = 320 when k = .006.	145) 146) 147) 148)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{\ln 6}^{\ln 6} 6^{4} \cosh t dt$ In 2 A) $12 + 3 \ln 3$ Use logarithmic differentiation (152) $y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3} (\ln x + \ln(x-7) - \frac{1}{3} (\ln x + \ln(x-7) - \frac{1}{3} (\ln x + \ln(x-7) - \frac{4x^3}{x^4+5})$ Evaluate the derivative of y with rest (153) $y = 3 \sin^{-1}(4x^4)$ A) $\frac{48x^3}{\sqrt{1-16x^4}}$ Solve the problem. 154) Consider a linear funct inverse? Explain. A) Yes it will be its or x. Therefore it is is B) Yes it will be its or C. No it won't be its. D) No it won't be its. Evaluate the integral. $155) \int_{0}^{\pi/2} \frac{5x^2/2-1}{\ln 5}$ Determine whether the integration of the in	B) $\ln\left(\frac{3}{11}\right)$ B) $48 + 3 \ln 3$ to find the derivative of y in (x ⁴ + 5)) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ tion that is perpendicular the win inverse. If it is perpendicular the is own inverse. All perpendic own inverse. Its inverse with B) $\frac{-4}{\ln 5}$ on formula is correct.	C) ln 2 C) 60 + 3 ln 12 J. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4 + 5}}\left(\frac{1}{x} + 1\right)$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4 + 5}}\left(\frac{1}{x} + 1\right)$ C) $\frac{3}{\sqrt{1 - 16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry is symmetry and the same but the y-in the y-in the same but the y-in the same but the y-in t	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses. netrcept will be different ti s perpendicular to it.	1
144) An oil storage tank can be described as the volum $y = \frac{24.0}{\sqrt{640 + x^2}}, x = 0, y = 0, x = 2 \text{ about the x-axis}$ A) 0.770 m ³ B) 457 m ³ the angle. 145) cot ⁻¹ (-1) A) $= \frac{\pi}{4}$ B) $= \frac{3\pi}{4}$ the domain and range of the inverse of the given fun 146) f(x) $= \frac{1}{6}x - 8$ A) Domain: (- $x, 6$) \cup (6, x); range: all real numb B) Domain (- $x, 6$) \cup (6, x); range: (- $x, 6$) \cup (6, x) C) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) Domain and range: (- $x, 6$) \cup (6, x) D) $\sum \frac{\sqrt{x^5 + 3}}{(x + 8)^{2/3}} \left[\ln x + \frac{1}{2} \ln(x^5 + 3) - \frac{2}{3} \ln(x + 8) \right]$ C) $\frac{1}{x} + \frac{5x^4}{2x^5 + 6} - \frac{2}{3x + 24}$ the derivative of y with respect to x. 148) $y = \sin^{-1} \left[\frac{1}{x^3} \right]$ A) $\frac{-3}{\sqrt{x^6 - 1}}$ B) $\frac{-3x^3}{\sqrt{1 - x^6}}$ E the problem. 149) The velocity of a body of mass m falling from respectives and the density of the air, g is the grav into the fall. Find the limiting velocity, $\lim_{n \to \infty} x$ A) 0.00 ft/sec	the generated by revolving s. Find the volume (in m ³) C) 55.4 m ³ C) $\frac{3\pi}{4}$ ction. B) $\ln x + \frac{1}{2}\ln(x^5 + 3) - \frac{1}{2x^3}$ D) $\frac{x\sqrt{x^5+3}}{(x+8)^2/3} \left\{ \frac{1}{x} + \frac{5}{2x^3} - \frac{1}{2x^3} + \frac{5}{2x^3} - \frac{1}{2x^3} + \frac{5}{2x^3} - \frac{1}{2x^3} + \frac{5}{2x^3} + \frac{1}{2x^3} + \frac{1}{2x$	b) of the tank. D) 18.5 m ³ D) $\frac{\pi}{4}$ D) $\frac{\pi}{4}$ $\frac{-\frac{2}{3}\ln(x+8)}{5x^4 - \frac{2}{3x+24}}$ D) $\frac{-3}{1+x^6}$ ty is given by the body's aerodynamic the number of seconds s = 320 when k = .006.	145) 146) 147) 148)	$150) \int_{6/5}^{3/2} \frac{dx}{1-x^2}$ A) $\frac{1}{2} \ln \left(-\frac{2}{11}\right)$ Evaluate the integral. $151) \int_{10}^{10} \frac{6}{6} e^{1} \cosh t dt$ A) $12 + 3 \ln 3$ Use logarithmic differentiation 1 $152) y = \sqrt[3]{\frac{x(x-7)}{x^4+5}}$ A) $\frac{1}{x} + \frac{1}{x-7} - \frac{4x^3}{x^4+5}$ C) $\frac{1}{3}(\ln x + \ln(x-7) - \frac{1}{x^3})$ Find the derivative of y with ress $153) y = 3 \sin^{-1}(4x^4)$ A) $\frac{48x^3}{\sqrt{1-16x^4}}$ Solve the problem. $154) \text{ Consider a linear funct inverse? Explain. A) Ye it will be its or x. Therefore it is is B) Yes it will be its or C.) No it won't be its. D) No it won't be its. D) No it won't be its. 155) \int_{0}^{\pi/2} \frac{5x \cos t}{\ln 5} \sin t dt A) \frac{5\pi/2-1}{\ln 5}$	B) $\ln\left(\frac{3}{11}\right)$ B) $48 + 3 \ln 3$ to find the derivative of y in (x ⁴ + 5)) pect to x. B) $\frac{48x^3}{\sqrt{1 - 16x^8}}$ tion that is perpendicular the win inverse. If it is perpendicular the is own inverse. All perpendic own inverse. Its inverse with B) $\frac{-4}{\ln 5}$ on formula is correct.	C) ln 2 C) 60 + 3 ln 12 J. B) $\frac{1}{3}\sqrt[3]{\frac{x(x-7)}{x^4 + 5}}\left(\frac{1}{x} + 1\right)$ D) $3\sqrt[3]{\frac{x(x-7)}{x^4 + 5}}\left(\frac{1}{x} + 1\right)$ C) $\frac{3}{\sqrt{1 - 16x^8}}$ to the line y = x. Will this dicular to y = x it is symmetry is symmetry and the same but the y-in the y-in the same but the y-in the same but the y-in t	D) 48 + ln 4 $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ $\frac{1}{x-7} - \frac{4x^3}{x^4+5}$ D) $\frac{48x^3}{1-16x^8}$ s function be its own netric with respect to y = nverses. netrcept will be different ti s perpendicular to it.	1



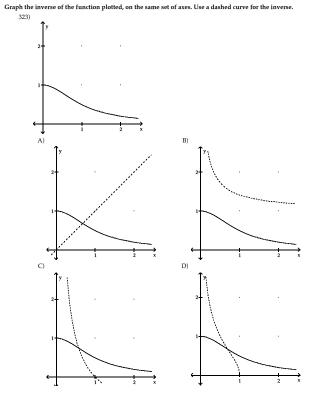


200) $f(x) = -\frac{6}{x}$ A) Domain: $(0, \infty)$; r	ange: (-∞, 0)	B) Domain: (-∞, 0)	∪ (0, ∞); range: (-∞, 0)		::::::::::::::::::::::::::::::::::::::				
C) Domain and ran		D) Domain and rai	nge: $(-\infty, 0) \cup (0, \infty)$			· · · · · · · · · · · · · · · · · · ·			
lify the expression. 201) log ₁₀ 10				201)	< <u>;;;;;;;;</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;				
A) 0	B) 1	C) -1	D) 10						
tate the integral. $\frac{8 dx}{8 + 7x}$				202)	-10-				
		m 4 1 10 7 1 1	_	202)	A) No		B) Yes		
A) ln -8 - 7x + C		B) $\frac{4}{7} \ln 8 + 7x + 6$			Answer the question approp	riately.	b) 103		
C) $\frac{8}{7} \ln -8 - 7x + C$		D) -8 ln -8 - 7x +	С		207) Find the area of the	•	first quadrant that is bound right by the line $x = \ln 4$	ed above by the curve	
mine whether the integra					A) $\frac{52}{3}$	B) 4 ln 4	C) $\frac{80}{3}$	D) 18	
203) $\int 8 \operatorname{sech} x \mathrm{d}x = \sin^{-1}$	$(1 - x^2) + C$			203)	-		5		
A) Yes		B) No			Evaluate the integral. 208) $\int (e^{2x} - e^{-2x}) dx$				
the problem. 204) Find the average valu	ie of the function $y = -\frac{1}{2}$	15 over the interva	1 from $x = 0$ to $x = \frac{3}{\pi}$.	204)	A) $\frac{1}{2}(e^{2x} + e^{-2x})$	+ C	B) $\frac{e}{2}(e^{2x} + e^{-2x}) + 0$		
		$C) \frac{1}{2}\pi$		·	C) $\frac{1}{2}(e^{x} - e^{-x}) + 0$		D) $\frac{1}{2}(e^{2x} - e^{-2x}) +$		
A) $\frac{1}{3}\pi$	B) $\frac{1}{6}\pi$	$C) \frac{\pi}{2}$	$D) - \frac{\pi}{6}$		2 (ex-ex) + (2(22222222)	-	
the equation for x. $-2\log(x) = 1$.	(40)			205)	Evaluate the integral in term	of natural logarithms.			
205) $\ln e + 6^{-2\log_6(x)} = \frac{1}{x}$				205)	209) $\int_{1}^{e^4} \frac{2 dx}{x \sqrt{1 + (\ln x)^2}}$				
A) $\frac{1}{42}$	B) -1	C) 1	D) No real solution		A) 2 ln (4 + $\sqrt{17}$)	B) 4	C) 2 ln $(1 + \sqrt{2})$	D) ln (4 + $\sqrt{17}$)	
					Evaluate the integral.				
					210) $\int \frac{dt}{t^2 + 12t + 40}$				
					A) tan ⁻¹ (t - 6) +		B) $\frac{1}{2}$ tan ⁻¹ $\left(\frac{t+6}{2}\right)$ +	2	
					C) $2 \tan^{-1}\left(\frac{t+6}{2}\right)$	+ C	D) -6t+ C		
					Answer the question approp				
					211) Find the absolute n	inimum value of $f(x) = e^{X}$			
					A) e ² - 6	B) 3 – 3 ln 3	C) 3 - ln 3	D) 1	
		33					34		
function graphed below	one-to-one?	33			Find the angle.		34		
function graphed below 212) fr.	one-to-one?	33		212)	218) cos ⁻¹ -1	B) 1/2	34 C) 0	D) π	
	one-to-one?	33		212)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$	B) ¹ / _π		D) π	
	one-to-one?	33		212)	$218) \cos^{-1} - 1$ $A) - \frac{\pi}{2}$ Evaluate the integral.			D) π	
	one-to-one?	33		212)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$		C) 0		
	one-to-one?	33		212)	$218) \cos^{-1} - 1$ $A) - \frac{\pi}{2}$ Evaluate the integral.				
	one-to-one?	33		212)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$		C) 0		
	one-to-one?	33 B) Yes		212)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$	B) $\frac{\ln 3}{2} + 2$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$	D) $\frac{\ln 3}{2} - \frac{2}{9}$	
212)	one-to-one?				218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$		C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$		
212) 100^{-10} 30	5 10 ×	B) Yes		212)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression.	B) $\frac{\ln 3}{2} + 2$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$	D) $\frac{\ln 3}{2} - \frac{2}{9}$	
212) 4 4 4 4 4 4 4 4	one-to-one?		D) 2		218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln (e^{10x})$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) -4 e ^{1/x} + C	
212) 400 100	B) 7	B) Yes C) -2		213)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression.	B) $\frac{\ln 3}{2} + 2$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$	D) $\frac{\ln 3}{2} - \frac{2}{9}$	
212) y,	B) 7	 B) Yes C) -2 n f(x) = mx, where m is a 			218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral.	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) -4 e ^{1/x} + C	
212) y,	B) 7	B) Yes C) -2	nonzero constant.	213)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln(e^{10x})$ A) $10x$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) -4 e ^{1/x} + C	
212) y,	B) 7 f the inverse of the function B) 1	 B) Yes C) -2 n f(x) = mx, where m is a 	nonzero constant.	213)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral.	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) y,	B) 7 f the inverse of the function B) 1	 B) Yes C) -2 n f(x) = mx, where m is a 	nonzero constant.	213)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) 10x Evaluate the integral. 222) $\int_{1}^{2} 9x^2 2x^3 dx$ A) 762	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) -4 e ^{1/x} + C	
212) 100^{-100}	B) 7 the inverse of the function B) 1	 B) Yes C) -2 n f(x) = mx, where m is a 	nonzero constant.	213) 214)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln(e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m.	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) y,	B) 7 f the inverse of the function B) 1	 B) Yes C) -2 n f(x) = mx, where m is a 	nonzero constant.	213) 214)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) 10x Evaluate the integral. 222) $\int_{1}^{2} 9x^2 2x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8 + x^2} + \frac{1}{x\sqrt{y}}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) A No A -7 the problem. 213) $\log 7 \frac{1}{49}$ A -7 the problem. 214) Find the derivative of A) $\frac{mx^2}{2}$ ate the integral. 215) $\int_{-2/7}^{-\sqrt{2}/7} \frac{dt}{t\sqrt{4992-1}}$ A) $-\frac{\pi}{6}$	B) 7 the inverse of the function B) 1	B) Yes C) -2 n f(x) = mx, where m is a C) $\frac{1}{m}$	nonzero constant. D) m	213) 214) 215)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln(e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8+x^2} + \frac{1}{x\sqrt{y}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1}{7}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 n f(x) = mx, where m is a C) $\frac{1}{m}$ C) $\frac{\pi}{6}$	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln(e^{10x})$ A) 10x Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8 + x^2} + \frac{1}{x\sqrt{5}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1}{\frac{8}{8}}$ B) $y = \frac{7}{8} \tan^{-1}{\frac{8}{8}}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2} - 1$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) A No A -7 the problem. 213) $\log 7 \frac{1}{49}$ A -7 the problem. 214) Find the derivative of A) $\frac{mx^2}{2}$ ate the integral. 215) $\int_{-2/7}^{-\sqrt{2}/7} \frac{dt}{t\sqrt{4992-1}}$ A) $-\frac{\pi}{6}$	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 n f(x) = mx, where m is a C) $\frac{1}{m}$ C) $\frac{\pi}{6}$	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln(e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8+x^2} + \frac{1}{x\sqrt{y}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1}{7}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2} - 1$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 n f(x) = mx, where m is a C) $\frac{1}{m}$ C) $\frac{\pi}{6}$	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^2 2x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8+x^2} + \frac{1}{x\sqrt{x}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1} \frac{8}{8}$ C) $y = \tan^{-1} \frac{\sqrt{2}}{4}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2} - 1$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) (1) (1) (1) (1) (1) (1) (1) (1	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 n f(x) = mx, where m is a C) $\frac{1}{m}$	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^2 2x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8+x^2} + \frac{1}{x\sqrt{y}}$ A) $y = \frac{7}{4}\sqrt{z} \tan^{-1} \frac{8}{8}$ C) $y = \tan^{-1} \frac{\sqrt{2}}{4}$ D) $y = \frac{7}{4}\sqrt{z} \tan^{-1} \frac{1}{8}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$ $+ \sec^{-1} x - 3$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1$	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
212) (1) (1) (1) (1) (1) (1) (1) (1	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 f(x) = mx, where m is a C) $\frac{\pi}{6}$ B) $\sin^{-1}\left(\frac{8}{3}x\right) + C$ D) $\frac{1}{3}\sin^{-1}\left(\frac{8}{3}x\right) + 1$ y revolving the area bout	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{10^{-3}} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8 + x^2} + \frac{1}{x\sqrt{2}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1}\frac{x}{4}$ C) $y = \tan^{-1}\frac{x^2}{4}$ D) $y = \frac{7}{4}\sqrt{2} \tan^{-1}\frac{x}{4}$ Evalue of dt^{-1}/dx at 224 (f(x) = $4x^2$, x ≥ 0, a = 1000	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$ $+ 5 \sin^{-1} x$ $+ \sec^{-1} x - 3$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1$ = f(a).	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$ $-\frac{7}{16}\pi\sqrt{2}$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10} D) $\frac{18}{\ln 2}$	
212) $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	B) 7 (the inverse of the function B) 1 B) $\frac{\pi}{12}$ c are solid that is generated b = 1, and x = 6 about the x	B) Yes C) -2 f(x) = mx, where m is a C) $\frac{\pi}{6}$ B) sin ⁻¹ $\left(\frac{8}{3}x\right) + C$ D) $\frac{1}{3}sin^{-1}\left(\frac{8}{3}x\right) + y$ y revolving the area boun-axis.	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215) 216)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{\ln 3} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^2 2x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8 + x^2} + \frac{1}{x\sqrt{3}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1} \frac{8}{8}$ C) $y = \tan^{-1} \frac{\sqrt{2}8}{4}$ D) $y = \frac{7}{4}\sqrt{2} \tan^{-1}$	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$ $+ 5 \sin^{-1} x$ $+ \sec^{-1} x - 3$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1$ = f(a).	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10}	
12) 12) 12) 14) No 15) $\int_{-2/7}^{-\sqrt{2/7}} \frac{dt}{t\sqrt{49(2-1)}}$ 15) $\int_{-2/7}^{-\sqrt{2/7}} \frac{dt}{t\sqrt{49(2-1)}}$ 16) $\int \frac{8 dx}{\sqrt{9-64x^2}}$ 17) Find the volume of th 17) Find the volume of th curve $y = \sqrt{\frac{4x}{x^2+1}} x$	B) 7 the inverse of the function B) 1 B) $\frac{\pi}{12}$	B) Yes C) -2 f(x) = mx, where m is a C) $\frac{\pi}{6}$ B) sin ⁻¹ $\left(\frac{8}{3}x\right) + C$ D) $\frac{1}{3}sin^{-1}\left(\frac{8}{3}x\right) + y$ y revolving the area boun-axis.	nonzero constant. D) m D) $-\frac{\pi}{12}$	213) 214) 215) 216)	218) $\cos^{-1} - 1$ A) $-\frac{\pi}{2}$ Evaluate the integral. 219) $\int_{0}^{10^{-3}} e^{-t} \sinh t dt$ A) $\ln \frac{3}{2} - \frac{2}{9}$ 220) $\int \frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4x^2} dx$ A) $-\frac{e^{1/x}}{4} + C$ Simplify the expression. 221) $\ln (e^{10x})$ A) $10x$ Evaluate the integral. 222) $\int_{1}^{2} 9x^22x^3 dx$ A) 762 Solve the initial value proble 223) $\frac{dy}{dx} = \frac{7}{8 + x^2} + \frac{1}{x\sqrt{2}}$ A) $y = \frac{7}{4}\sqrt{2} \tan^{-1}\frac{x}{4}$ C) $y = \tan^{-1}\frac{x^2}{4}$ D) $y = \frac{7}{4}\sqrt{2} \tan^{-1}\frac{x}{4}$ Evalue of dt^{-1}/dx at 224 (f(x) = $4x^2$, x ≥ 0, a = 1000	B) $\frac{\ln 3}{2} + 2$ B) $\frac{e^{-1/x}}{4} + C$ B) $\frac{1}{10}$ B) $\frac{762}{\ln 2}$ m. $\frac{5}{2-1}$, $y(2) = -1$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1 - \frac{5\pi}{3}$ $+ 5 \sin^{-1} x$ $+ \sec^{-1} x - 3$ $\frac{\sqrt{2x}}{4} + 5 \sec^{-1} x - 1$ = f(a).	C) 0 C) $\frac{\ln 3}{2} + \frac{1}{36}$ C) $\frac{e^{1/x}}{4} + C$ C) 10 C) $\frac{3}{\ln x} + C$ $-\frac{7}{16}\pi\sqrt{2}$	D) $\frac{\ln 3}{2} - \frac{2}{9}$ D) $-4 e^{1/x} + C$ D) e^{10} D) $\frac{18}{\ln 2}$	

225) 7log7 (9x)	B) 0	C) 7 ⁹ x	D) 7	225)		gion between the curve y =			234)
A) 1 mine whether the integratio	B) 9x n formula is correct.	C) / 2X	D) 7		A) $\frac{4}{\ln 2}$	B) $\frac{3}{\ln 2}$	C) 3 ln 2	D) 4	
26) $\int x^4 \cos^{-1} 4x dx = \frac{x^5}{5} \cos^{-1} 4x dx$		+ C		226)	Use logarithmic differentiation 235) $y = \cos x \sqrt{3x + 8}$				235)
A) No	V1 - 10X-	B) Yes			A) $\cos x\sqrt{3x+8}$ [Inc	$\log x + \frac{1}{2}\ln(3x+8)$	B) $\cos x\sqrt{3x+8} \frac{1}{\sin x}$	$\frac{1}{1x \cdot \cos x} + \frac{3}{3x + 8}$,
he domain and range of the	inverse of the given fund	tion.			C) $\frac{-6\tan x - 13\tan x}{3x + 16}$,	B) $\cos x\sqrt{3x+8} \frac{1}{\sin x}$ D) $\cos x\sqrt{3x+8} \tan x$	$1x + \frac{3}{2(3x+8)}$	
 227) f(x) = (7x - 4)³ A) Domain: [7, ∞); rang C) Domain: [0, ∞); rang 		B) Domain and ranD) Domain: [4, ∞); r	0	227)	Find the derivative of y with re $236) y = \log_2 \left[\left(\frac{x+2}{2} \right)^{\ln 2} \right]$	spect to the independent v	variable.	,	236)
the initial value problem.					$\frac{1}{x-2}$	$B) \frac{-4}{(x+2)(x-2)}$	C)	$D\left(\frac{1}{x+2}\right)\ln \frac{1}{x+2}$	2
(228) $\frac{dy}{dx} = \frac{4}{1+x^2} - \frac{3}{\sqrt{1-x^2}},$	y(0) = -3			228)	$(x-2)^2$	(x+2)(x-2)	$\frac{x+2}{x+2}$	$\left(\frac{\ln 2}{\ln 2}\right)$	
A) $y = 4 \tan^{-1} x - 3$ C) $y = 4 \tan^{-1} x - 3 \sin^{-1} x $	-1 x - 1	B) $y = 4 \tan^{-1} x - 3$ D) $y = 4 \cot^{-1} x - 3$			A value of sinh x or cosh x is gi other indicated hyperbolic fun		nd the identity cosh2 x -	- sinh2 x = 1 to find the v	alue of
mine whether the integratio					237) $\sinh x = \frac{4}{3}$, $\tanh x =$				237)
(229) $\int (\sin^{-1} x)^2 - 6 dx = x$	$(\sin^{-1} x)^2 - 8x + 2\sqrt{1 - x^2}$			229)	A) $\frac{5}{4}$	B) $\frac{5}{3}$	C) $\frac{4}{5}$	D) $-\frac{4}{5}$	
A) No		B) Yes			Find the derivative of y with re	spect to x, t, or θ , as appro	priate.		
<u>dy</u> dx				220)	$\begin{array}{l} 238) y = \ln(\ln 2x) \\ A) \frac{1}{x} \end{array}$	B) $\frac{1}{x \ln 2x}$	C) $\frac{1}{\ln 2x}$	D) $\frac{1}{2x}$	238)
(230) $\tan y = e^x + \ln 8x$ A) $\frac{xe^x + 8}{xe^x}$	B) $e^{x} + \frac{8}{x} - \sec^{2} y$	C) $\frac{e^{X}+8}{2}$	D) $\frac{xe^{X}+8}{2}$	230)	~	' x ln 2x	' ln 2x	/ 2x	
x sec ² y	x - acc- y	sin ² y	xcot y		Simplify the expression. 239) log _e e x - 16				239)
the problem. 231) The region between the	curve $y = \frac{1}{2}$ and the $y = \frac{1}{2}$	the from $x = \frac{1}{2} t_0 x - \pi$	s revolved about the	231)	A) x - 16	B) log _e 16	C) log x - 16	D) 16log _e e	
	curve $y = \frac{1}{x^2}$ and the x-ax d. Find the volume of the				Rewrite the expression in term 240) 14 cosh (ln x)	s of exponentials and simp	olify the results.		240
A) $2\pi \ln 5$	B) $\pi \ln 5 - \pi$	C) $4\pi \ln 5$	D) 2π ln 5 - π		240) 14 cosh (ln x) A) 0	B) 7x	C) 7(e ^x + e ^{-x})	D) $7\left(x+\frac{1}{x}\right)$	240)
<u>dy</u> dx					Evaluate the interval			(×)	
232) $\sin y = 6x + 3y$		1	,	232)	Evaluate the integral. 241) $\int_{\ln 2}^{\ln 4} \coth 7x dx$				241)
A) $\frac{6+3}{\cos y}$	B) 6 + 3 - cos y	C) $\frac{1}{\sin y - 3}$	D) $\frac{6}{\cos y - 3}$			- 9	_ 1 5	5	-41)
the derivative of y.					A) $\frac{1}{7} \ln 2$	B) $\frac{9}{56}$	C) $\frac{1}{7} \ln \frac{5}{2}$	D) $\ln \frac{5}{2}$	
233) $y = \ln (\sinh 2x)$ A) $\frac{1}{\sinh 2x}$	B) 2 coth 2x	C) coth 2x	D) 2 csch 2x	233)					
		-,							
sinn 2x		37					38		
		37		242)	Solve the problem. 249) A certain radioactive	isotope decays at a rate of 2		resents time in years and	249)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$	B) $\frac{5}{7 \ln x} + C$		D) 35	242)	249) A certain radioactive y represents the amor how many years will	int of the isotope left then t there be 93% of the isotope	2% per 100 years. If t rep he equation for the situat .left?	tion is $y = y_0 e^{-0.0002t}$. In	
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$	B) $\frac{5}{7 \ln x} + C$		D) 35	242)	249) A certain radioactive y represents the amo how many years will A) 253 years	Int of the isotope left then t there be 93% of the isotope B) 350 years	2% per 100 years. If t rep he equation for the situat		
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^3		$C)\frac{35}{\ln 6}$		242)	249) A certain radioactive y represents the amou how many years will A) 253 years Solve the initial value problem	unt of the isotope left then (there be 93% of the isotope B) 350 years	2% per 100 years. If t rep he equation for the situat .left?	tion is $y = y_0 e^{-0.0002t}$. In	
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx.	B) $\frac{5}{7 \ln x} + C$ B) $-3(8 - x)^2$		D) 35 D) x ^{2/3}		249) A certain radioactive y represents the amo how many years will A) 253 years	int of the isotope left then the theorem best of the isotope by 33% of the isotope by 350 years $\frac{-1}{e}$, $y'(0) = -1$	2% per 100 years. If t rep he equation for the situat .left?	tion is $y = y_0 e^{-0.0002t}$. In	
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^3 A) $\frac{-1}{3x^2/3}$ the derivative of y with resp	B) -3(8 - x) ²	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3}		243)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$	int of the isotope left then the theorem best of the isotope by 33% of the isotope by 350 years $\frac{-1}{e}$, $y'(0) = -1$	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) y = t ² - e ^{-t} - 1t	tion isy = y ₀ e ^{-0.0002t} . In D) 700 years	
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^3 A) $\frac{-1}{3x^2/3}$ the derivative of y with resp	B) -3(8 - x) ²	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3}			249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$	int of the isotope left then the theorem best of the isotope by 33% of the isotope by 350 years $\frac{-1}{e}$, $y'(0) = -1$	2% per 100 years. If t rep he equation for the situat left? C) 363 years	tion isy = y ₀ e ^{-0.0002t} . In D) 700 years	
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$	 B) -3(8 - x)² ect to x, t, or θ, as appropriate 	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3}	D) x ^{2/3}	243)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem $250) \frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral.	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y'(0) = -1$	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) y = t ² - e ^{-t} - 1t	tion isy = y ₀ e ^{-0.0002t} . In D) 700 years	250)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^3$ A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) $y = \ln 5x^2$ A) $\frac{2}{x}$	 B) -3(8 - x)² ect to x, t, or θ, as appropriate 	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3}	D) x ^{2/3}	243) 244)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y'(0) = -1$	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$	tion isy = y ₀ e ^{-0.0002t} . In D) 700 years	250)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ 245) $e^{2x} = \sin (x + 6y)$	 B) -3(8 - x)² ect to x, t, or θ, as appropriate 	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3} iate. C) $\frac{1}{2x+5}$	D) $x^{2/3}$ D) $\frac{10}{x}$	243)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem $250) \frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral.	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y'(0) = -1$	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) y = t ² - e ^{-t} - 1t	tion isy = y ₀ e ^{-0.0002t} . In D) 700 years	250)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^3$ A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) $y = \ln 5x^2$ A) $\frac{2}{x}$ $\frac{dy}{dx}$. 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$	 B) -3(8 - x)² ect to x, t, or θ, as appropriate 	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ fiate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$	D) $x^{2/3}$ D) $\frac{10}{x}$	243) 244)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}$, $y'(0) = -1$ 1 $e^{e^2} 2x dx$ B) $-\frac{e}{2}$	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e	250)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ 245) $e^{2x} = \sin (x + 6y)$	 B) -3(8 - x)² ect to x, t, or θ, as appropriate 	C) $\frac{35}{\ln 6}$ C) 8 - x ^{1/3} iate. C) $\frac{1}{2x+5}$	D) $x^{2/3}$ D) $\frac{10}{x}$	243) 244)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) 2e	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}$, $y'(0) = -1$ 1 $e^{e^2} 2x dx$ B) $-\frac{e}{2}$	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e	250) 251)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^3 A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) y = ln 5x^2 A) $\frac{2}{x}$ $\frac{dy}{dx}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) ln sin (x + 6y) et he initial value problem.	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriate B) $\frac{2x}{x^2 + 5}$	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ fiate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$	D) $x^{2/3}$ D) $\frac{10}{x}$	243) 244) 245)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y'(0) = -1$ 1 1 $xe^2 2x dx$ $B) - \frac{e}{2}$ $(0) = 0, y'(0) = 4$	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e	250) 251)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^3$ A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) $y = \ln 5x^2$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ e the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) = e^{2x}$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriate B) $\frac{2x}{x^2 + 5}$	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ fiate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6y)}{6\cos(x+6y)}$	D) $x^{2/3}$ D) $\frac{10}{x}$	243) 244)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_0^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y'(0) = -1$ 1 $xe^{2} 2x dx$ $B) - \frac{e}{2}$ $(0) = 0, y'(0) = 4$ $\frac{15}{2}t - \frac{1}{4}$	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e D) e	250)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^{3} A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ 225) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) ln sin (x + 6y) e the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriate B) $\frac{2x}{x^2 + 5}$	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ iiate. C) $\frac{1}{2x + 5}$ B) $\frac{2e^{2x}}{6\cos(x + 6y)} - 1$ D) $\frac{2e^{2x} - \cos(x + 6y)}{6\cos(x + 6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{9}\sin e^{9x}$	D) $x^{2/3}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$	243) 244) 245)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t +$ C) $y = e^{2t} - 4 \sin t +$	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}$, $y'(0) = -1$ 1 $e^{2} + 2x dx$ B) $-\frac{e}{2}$ (0) = 0, y'(0) = 4 $+\frac{15}{2}t - \frac{1}{4}$ $7t - \frac{1}{4}$	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^{2t}}{4} - 4 \sin t$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e D) e	250) 251)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) = e^{9x}$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriate B) $\frac{2x}{x^2 + 5}$	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ fiate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6y)}{6\cos(x+6y)}$	D) $x^{2/3}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$	243) 244) 245)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ C) $y = e^{2t} - 4 \sin t +$ Find the derivative of y with re 253) $y = \ln 7x$	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y^{4}(0) = -1$ 1 $xe^{2} 2x dx$ $B) - \frac{e}{2}$ $(0) = 0, y^{4}(0) = 4$ $\frac{15}{2}t - \frac{1}{4}$ $7t - \frac{1}{4}$ spect to x, t, or 0, as approximately a second se	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^{2t}}{4} - 4 \sin t$	tion is $y = y_0 e^{-0.0002t}$. In D) 700 years $+ 0 - \frac{2}{e}$ D) e $+ 4t - \frac{1}{4}$	250) 251) 252)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^3$ A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) $y = \ln 5x^2$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ ite the following without us	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriate B) $\frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ inte. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6)}{6\cos(x+6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} - \frac{1}{5}$	D) $x^{2/3}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{9} \sin 1$	243) 244) 245) 246)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ C) $y = e^{2t} - 4 \sin t$ + Find the derivative of y with re	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}$, $y'(0) = -1$ 1 $e^{2} + 2x dx$ B) $-\frac{e}{2}$ (0) = 0, y'(0) = 4 $+\frac{15}{2}t - \frac{1}{4}$ $7t - \frac{1}{4}$	2% per 100 years. If t rep he equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^{2t}}{4} - 4 \sin t$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - ² / _e D) e	250) 251) 252)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ 225) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ et initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) = A$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ ite the following without us 247) sin(tan^{-1} u)	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ itate. C) $\frac{1}{2x + 5}$ B) $\frac{2e^{2x}}{6\cos(x + 6y)} - 1$ D) $\frac{2e^{2x} - \cos(x + 6)}{6\cos(x + 6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{5}$ rese trigonometric function	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{7} \sin 1$ tions.	243) 244) 245)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t +$ C) $y = e^{2t} - 4 \sin t +$ Find the derivative of y with re 253 $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y^{4}(0) = -1$ 1 $xe^{2} 2x dx$ $B) - \frac{e}{2}$ $(0) = 0, y^{4}(0) = 4$ $+ \frac{15}{2}t - \frac{1}{4}$ $7t - \frac{1}{4}$ $B) - \frac{1}{7x}$	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$	tion is $y = y_0e^{-0.0002t}$. In D) 700 years $+ 0 - \frac{2}{e}$ D) e $+ 4t - \frac{1}{4}$	250) 251) 252) 253)
242) $\int_{1}^{e} 7x \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^3$ A) $\frac{-1}{3x^2/3}$ the derivative of y with resp 244) $y = \ln 5x^2$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ et le initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ it the following without us	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ inte. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6)}{6\cos(x+6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} - \frac{1}{5}$	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{7} \sin 1$ tions.	243) 244) 245) 246)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ + C) $y = e^{2t} - 4 \sin t$ + Find the derivative of y with re 253) $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re 254) $x = 0 \sinh^{-1}(\ln x)$	int of the isotope left then there be 93% of the isotope B) 350 years	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$ ariable.	tion is y = y ₀ e ^{-0.0002t} . In D) 700 years + 0 - $\frac{2}{e}$ D) e + 4t - $\frac{1}{4}$ D) $\frac{1}{x}$	250) 251) 252) 253)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^{3} A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ e the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ cite the following without us 247) $\sin(\tan^{-1}u)$ A) $\frac{\sqrt{\ln^{2} + 1}}{u^{2} + 1}$ e the initial value problem.	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ itate. C) $\frac{1}{2x + 5}$ B) $\frac{2e^{2x}}{6\cos(x + 6y)} - 1$ D) $\frac{2e^{2x} - \cos(x + 6)}{6\cos(x + 6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{5}$ rese trigonometric function	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{7} \sin 1$ tions.	243) 244) 245) 246) 247)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ + C) $y = e^{2t} - 4 \sin t$ + Find the derivative of y with re 253) $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re 254) $x = 0 \sinh^{-1}(\ln x)$	int of the isotope left then there be 93% of the isotope B) 350 years $\frac{1}{e}, y^{4}(0) = -1$ 1 $xe^{2} 2x dx$ $B) - \frac{e}{2}$ $(0) = 0, y^{4}(0) = 4$ $+ \frac{15}{2}t - \frac{1}{4}$ $7t - \frac{1}{4}$ $B) - \frac{1}{7x}$	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$ ariable.	tion is $y = y_0e^{-0.0002t}$. In D) 700 years $+ 0 - \frac{2}{e}$ D) e $+ 4t - \frac{1}{4}$	250) 251) 252) 253)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) $f(x) = (8 - x)^{3}$ A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ et he initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ ite the following without us 247) $\sin(\tan^{-1} u)$ A) $\frac{\sqrt{u^{2} + 1}}{u^{2} + 1}$ et he initial value problem. 248) $\frac{dy}{dx} = \frac{10}{1 + x^{2}}$, $y(0) = -2$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ finate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6)}{6\cos(x+6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{9}$ D) $y = \frac{1}{9}\sin e^{9x} - \frac{1}{9}$ rese trigonometric functions of $\frac{u\sqrt{u^2 + 1}}{u^2 + 1}$	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{9} \sin 1$ tions. D) $\frac{u\sqrt{u^2 - 1}}{u^2 - 1}$	243) 244) 245) 246)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s +$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t + y +$ A) $y = \frac{e^{2t}}{4} - 4 \sin t +$ C) $y = e^{2t} - 4 \sin t +$ Find the derivative of y with re 253) $y = \ln 7x + A) \frac{1}{7x}$ Find the derivative of y with re 254) $y = 9 \sinh^{-1}(\ln x) + \frac{9}{1 + (\ln x)^2}$	int of the isotope left then there be 93% of the isotope B) 350 years	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$ ariable.	tion is y = y ₀ e ^{-0.0002t} . In D) 700 years + 0 - $\frac{2}{e}$ D) e + 4t - $\frac{1}{4}$ D) $\frac{1}{x}$	250) 251) 252) 253)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^{3} A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ e the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin e^{9x} - \frac{1}{9}$ rite the following without us 247) $\sin(\tan^{-1}u)$ A) $\frac{\sqrt{u^{2} + 1}}{u^{2} + 1}$ e the initial value problem.	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ itate. C) $\frac{1}{2x + 5}$ B) $\frac{2e^{2x}}{6\cos(x + 6y)} - 1$ D) $\frac{2e^{2x} - \cos(x + 6)}{6\cos(x + 6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{5}$ rese trigonometric function	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{9} \sin 1$ tions. D) $\frac{u\sqrt{u^2 - 1}}{u^2 - 1}$	243) 244) 245) 246) 247)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ + C) $y = e^{2t} - 4 \sin t$ + Find the derivative of y with re 253) $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re 254) $x = 0 \sinh^{-1}(\ln x)$	int of the isotope left then there be 93% of the isotope B) 350 years	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$ ariable.	tion is y = y ₀ e ^{-0.0002t} . In D) 700 years + 0 - $\frac{2}{e}$ D) e + 4t - $\frac{1}{4}$ D) $\frac{1}{x}$	250) 251) 252)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df-1/dx. 243) f(x) = (8 - x)^{3} A) $\frac{-1}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ $\frac{dy}{dx}$ 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ e the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}, y(0) = $ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin x$ d) $\frac{\sqrt{u^{2} + 1}}{u^{2} + 1}$ e the initial value problem. 248) $\frac{dy}{dx} = \frac{10}{1 + x^{2}}, y(0) = -2$ A) $y = 10 \sin^{-1} x - 2$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ iate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6y)}{6\cos(x+6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{5}$ ist rigonometric funct C) $\frac{u\sqrt{u^2+1}}{u^2+1}$ B) $y = 10 \tan^{-1} x - 2$	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{9} \sin 1$ tions. D) $\frac{u\sqrt{u^2 - 1}}{u^2 - 1}$	243) 244) 245) 246) 247)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$. C) $y = e^{2t} - 4 \sin t$ + Find the derivative of y with re 253) $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re 254) $y = 9 \sinh^{-1}(\ln x)$ A) $\frac{9}{1 + (\ln x)^2}$ Find the derivative of y. 255) $y = 4t^3 \tanh \left[\frac{1}{t^2}\right]$	int of the isotope left then there be 93% of the isotope B) 350 years	2% per 100 years. If t rep the equation for the situal left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^{2t}}{4} - 4 \sin t$ C) $-\frac{1}{x}$ ariable. C) $\frac{9}{\sqrt{1 + (\frac{1}{x})^2}}$	tion is y = y0e ^{-0.0002t} . In D) 700 years + 0 - $\frac{2}{e}$ D) e + 4t - $\frac{1}{4}$ D) $\frac{1}{x}$ D) $\frac{9}{x\sqrt{(\ln x)^2 - 1}}$	250) 251) 252) 253) 254)
242) $\int_{1}^{e} 7_{x} \ln 6 - 1 dx$ A) $\frac{5 - e}{\ln 7}$ the formula for df ⁻¹ /dx. 243) $f(x) = (e^{-x})^{3}$ A) $\frac{(e^{-x})^{3}}{3x^{2}/3}$ the derivative of y with resp 244) $y = \ln 5x^{2}$ A) $\frac{2}{x}$ dy dy dx 245) $e^{2x} = \sin (x + 6y)$ A) $\frac{e^{2x}}{6 \cos (x + 6y)}$ C) $\ln \sin (x + 6y)$ the initial value problem. 246) $\frac{dy}{dx} = e^{9x} \cos e^{9x}$, $y(0) =$ A) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin x$ C) $y = \frac{1}{9} \sin x$ dy 247) $\sin((\pi n^{-1}u))$ A) $\frac{\sqrt{u^{2} + 1}}{u^{2} + 1}$ the initial value problem. 248) $\frac{dy}{dx} = \frac{10}{1 + x^{2}}$, $y(0) = -2$ A) $y = 10 \sin^{-1} x - 2$	B) $-3(8 - x)^2$ ect to x, t, or θ , as appropriation $B_1 \frac{2x}{x^2 + 5}$ = 0	C) $\frac{35}{\ln 6}$ C) $8 - x^{1/3}$ iate. C) $\frac{1}{2x+5}$ B) $\frac{2e^{2x}}{6\cos(x+6y)} - 1$ D) $\frac{2e^{2x} - \cos(x+6y)}{6\cos(x+6y)}$ B) $y = -\frac{1}{9}\sin e^{9x} + \frac{1}{5}$ ist rigonometric funct C) $\frac{u\sqrt{u^2+1}}{u^2+1}$ B) $y = 10 \tan^{-1} x - 2$	D) $x^{2/3}$ D) $\frac{10}{x}$ D) $\frac{10}{x}$ $\frac{1}{9} \sin 1$ $\frac{1}{9} \sin 1$ tions. D) $\frac{u\sqrt{u^2 - 1}}{u^2 - 1}$	243) 244) 245) 246) 247)	249) A certain radioactive y represents the amon how many years will A) 253 years Solve the initial value problem 250) $\frac{d^2y}{dt^2} = 2 - e^{-t}$, $y(1) =$ A) $y = t^2 - e^{-t} - 2t +$ C) $y = t^2 - e^{-t}$ Evaluate the integral. 251) $\int_{0}^{\pi/8} (1 + e^{\tan 2x}) s$ A) $2e$ Solve the initial value problem 252) $\frac{d^2y}{dt^2} = e^{2t} + 4 \sin t$, y A) $y = \frac{e^{2t}}{4} - 4 \sin t$ C) $y = e^{2t} - 4 \sin t$ C) $y = e^{2t} - 4 \sin t$ Find the derivative of y with re 253) $y = \ln 7x$ A) $\frac{1}{7x}$ Find the derivative of y with re 254) $y = 9 \sinh^{-1}(\ln x)$ A) $\frac{9}{1 + (\ln x)^2}$ Find the derivative of y.	int of the isotope left then there be 93% of the isotope B) 350 years	2% per 100 years. If t rep the equation for the situat left? C) 363 years B) $y = t^2 - e^{-t} - 1t$ D) $y = 2t^2 + e^{-t} - 2t$ C) $\frac{e}{2}$ B) $y = \frac{e^{2t}}{4} - 4 \sin t$ D) $y = \frac{e^2t}{4} - 4 \sin t$ priate. C) $-\frac{1}{x}$ ariable.	tion is $y = y_0e^{-0.0002t}$. In D) 700 years $+ 0 - \frac{2}{e}$ D) e $+ 4t - \frac{1}{4}$ D) $\frac{1}{x}$ D) $\frac{9}{x\sqrt{(\ln x)^2 - 1}}$ S sech ² $\left[\frac{1}{t^2}\right]$	250) 251) 252) 253) 254)

259)

Is the function graphed below o 260)	ne-to-one?			260)
A) Yes		B) No		
Evaluate the integral. $261) \int_{-6}^{-11/2} \frac{-dx}{\sqrt{-x^2 - 12x}}$ $A) \frac{\pi}{6}$		C) $\frac{\pi}{3}$	D) $-\frac{\pi}{6}$	261)
262) $\int 5x \operatorname{sech} x^2 \tanh x^2$				262)
A) $\frac{5}{2}$ sech x ² + C	B) 5 csch x^2 + C	$C) - \frac{5}{2} \operatorname{sech} x^2 + C$	D) $\frac{\operatorname{sech} x^2}{2x}$ + C	
B) Absolute maximu C) Absolute maximu	m at (e $\pi/2$, 1); absolute mi	inimum at (4, sin (ln 4)) e minimum at (4, sin (ln 4)) e minimum at ($e^{\pi/2}$, -1)		263)
Find the angle.				
264) $\cos^{-1}\frac{\sqrt{2}}{2}$ A) $\frac{11\pi}{6}$	B) $\frac{7\pi}{4}$	C) $\frac{\pi}{6}$	D) $\frac{\pi}{4}$	264)
Find the derivative of y with res 265) $y = \ln (x - 2)$ A) $\frac{1}{2 - x}$	pect to x, t, or θ , as approp B) $\frac{1}{x-2}$	priate. C) $\frac{1}{x+2}$	$D) - \frac{1}{x+2}$	265)


Find the inverse of the function. 266) $f(x) = \frac{5}{x+6}$			266)
X + 0	6 + 5		
A) Not a one-to-one function	B) $f^{-1}(x) = \frac{6+5x}{x}$	-	
C) $f^{-1}(x) = \frac{-6x+5}{x}$	D) $f^{-1}(x) = \frac{x}{6+5x}$	-	
Find $\frac{dy}{dx}$.			
267) $e^{XY} = \sin x$			267)
A) $\frac{\cos x - ye^{xy}}{xe^{xy}}$ B) $\frac{\sin x - ye^{xy}}{xe^{xy}}$	C) $\frac{\cos x}{e^{xy}}$	D) $\frac{\cos x - ye^{xy}}{e^{xy}}$	
Solve the problem.			
268) Find the length of the curve $y = \sqrt{4 - x^2}$ betwee			268)
A) $\frac{1}{2}\pi$ B) $\frac{1}{3}\pi$	C) $\frac{2}{3}\pi$	D) $\frac{1}{6}\pi$	
Evaluate the integral.			
269) $\int \frac{5-4x}{\sqrt{4-25x^2}} \mathrm{d}x$			269)
A) $\sin^{-1}\left(\frac{5}{2}x\right) + \frac{4}{25}\sqrt{4 - 25x^2} + C$	B) $\frac{1}{2}$ tan ⁻¹ $\left(\frac{5}{2}x\right)$	$+\frac{4}{25}\sqrt{4-25x^2} + C$	
C) $\frac{4}{25}\sqrt{4-25x^2} + C$	D) $\sin^{-1}\left(\frac{5}{2}x\right) + \frac{1}{2}$	$\frac{4}{25}\ln(\sqrt{4-25x^2}) + C$	
Evaluate the integral in terms of natural logarithms.			
270) $\int_{3}^{18} \frac{\mathrm{d}x}{x\sqrt{x^2+9}}$			270)
A) $-\frac{1}{3} \ln \left(\frac{1 + \sqrt{2}}{1 + \sqrt{37}} \right)$	B) $-\ln \frac{1 + \sqrt{37}}{6}$		
C) $\frac{1}{3} \ln \left(\frac{1 + \sqrt{2}}{1 + \sqrt{35}} \right)$	D) $\frac{1}{3} \ln \left(\frac{6(1+\sqrt{3})}{1+\sqrt{3}} \right)$	$\left(\frac{\overline{2}}{7}\right)$	
Evaluate the integral.			
271) $\int_{-\pi/4}^{\pi/4} 10 \sinh(\tan\theta) \sec^2\theta d\theta$			271)
A) $10(e^{\pi/4} - e^{-\pi/4})$	B) 0		
	D) $10\left(e - \frac{1}{e}\right)$		

Solve the problem.	<u> </u>				Evaluate the integral.				
272) Consider the graph of f(x inverse?				272)	279) $\int_{-1}^{0} \frac{3 \text{ dt}}{\sqrt{3 - 2t - t^2}}$				279)
A) The graph of f is sym because $(f \circ f)(x) = x$.	umetric with respect to th	the line $y = x$. The function f	is its own inverse		A) $\frac{\sqrt{2}}{2} - \pi$	B) $\frac{1}{2}\pi$	C) 1π	D) $\frac{\pi}{6}$	
B) The graph of f has no symmetry.	o symmetry. The functio	n f is not its own inverse be	cause there is no		Solve the problem.	-		-	
C) The graph of f is sym because $(f \circ f)(x) = x $.		e y-axis. The function f is a	not its own inverse		280) If f(x) is one-to-one, is a	-(-) f() -l t			280)
D) The graph of f is sym because $(f \circ f)(x) = x$.	nmetric with respect to th	e y-axis. The function f is i	its own inverse			f(x) = f(-x) also one-to- of $f(x)$ across the x-axis.			
273) Find the half-life of the ra	adioactive element radiu	m assuming that its decay (constant is	273)	-		= x. It will not be one-to-c nine whether g(x) is one-to		
$k = 4.332 \times 10^{-4}$, with tim	e measured in years.			2/3/	-	of f(x) across the y-axis.	-		
A) 2308 years	B) 800 years	C) 1600 years	D) 1400 years		Find the derivative of y with resp 281) $y = \ln (\cos (\ln \theta))$	ect to x, t, or θ, as appr	opriate.		281)
Find the derivative of y with respective 274) $y = \cosh^{-1} 2\sqrt{x+9}$	ct to the appropriate var			274)	A) $\tan(\ln \theta)$	B) $-\frac{\tan(\ln \theta)}{\theta}$	C) $\frac{\tan(\ln \theta)}{\theta}$	D) – tan (ln θ)	
A) $\frac{1}{\sqrt{(2x+17)}}$		B) $\frac{1}{\sqrt{(4x+37)(x+9)}}$			Evaluate the integral.				
C) $\frac{1}{\sqrt{(2x+17)(x+9)}}$		D) $\frac{1}{\sqrt{(4x+35)(x+9)}}$			_				
Find the derivative of y with respe	ct to the independent va	riable.			282) $\int_{1}^{\sqrt{2}} x 8^{x^2} dx$				282)
275) y = t ² - e				275)	- 	0		28	
A) (1 – e)t2 – e	B) $\frac{t^3 - e}{3 - e}$	C) t2 - e	D) (2 - e)t1 - e		$A) \frac{8\sqrt{2}-8}{2\ln 8}$	B) $\frac{8}{\ln 8}$	C) 28	D) $\frac{28}{\ln 8}$	
Find the domain and range of the i 276) $f(x) = 3.9 - 1.92x$	nverse of the given func	tion.		27()	Solve the problem.	(1) IV			000)
A) Domain: $[3.9, \infty)$; ran	ge: all real numbers	B) Domain: all real num	-	276)	283) Find the linearization of A) y = 1.39x + 1	$f(x) = 4^x \text{ at } x = 0.$ Rous B) $y = 0.60x + 1$	C) $y = 4x + 1$	D) y = 1.39x	283)
C) Domain: all real nun	nbers; range: [3.9, ∞)	D) Domain and range: a	all real numbers		Evaluate the integral.				
Evaluate the integral. 277) $\int_{-\pi}^{\pi/8} 8 \tan 2x dx$				277)	284) $\int_{0}^{\pi/12} \frac{\sec^2 3x}{3 + \tan 3x} dx$				284)
0	D) (1 -			277)		_ 1 4	43	41	
A) -2 ln 2	B) 4 ln 2	C) 2 ln 3	D) 2 ln 2		A) $\frac{1}{3} \ln \left \frac{1}{3} \right $	$B) \frac{1}{3} \ln \left \frac{4}{3} \right $	C) $e^{\frac{4}{3}}$	D) $\ln \left \frac{4}{3} \right $	
Use logarithmic differentiation to $x = x^{\ln x}$	tind the derivative of y v	with respect to the indepen		278)	Evaluate exactly.				
A) $(\ln x)^2$	B) $_{x}\ln x - 1_{\ln x}$	C) <u>2</u> xln x - 1 _{ln x}	D) $\frac{2 \ln x}{x}$		285) $\sec\left(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$	F	- 5	- 5	285)
					A) -1	B) $\frac{-\sqrt{3}}{2}$	C) $\frac{2\sqrt{3}}{3}$	D) $-\frac{2\sqrt{3}}{3}$	
Find $\frac{dy}{dx}$.					Solve the problem. 293) Find the area of the regi	on between the curve v	$=6x/(1 + x^2)$ and the inte	rval −2 ≤ x ≤ 2 of the	293)
286) $\ln y = e^y \cos 8x$ -8ye ^y sin 8x				286)	x-axis. A) 6 ln 5	B) 0	C) 6 e ⁵	D) ln 5	
A) $\frac{-8yey \sin 8x}{1 - yey \cos 8x}$		B) eV cos 8x - 8eV sin 8x	κ.		Determine whether the integration				
C) -8ye ^y sin 8x		D) $\frac{yey \sin 8x}{1 - e^y \cos 8x}$			294) $\int x^5 \sin^{-1} 8x dx = \frac{x^4}{4} s$	$\sin^{-1} 8x + \frac{8}{6} \int \frac{x^6 dx}{\sqrt{1 - 64x}}$			294)
Evaluate the integral.					A) Yes		B) No		
$287) \int \frac{\log_9 x}{x} dx$				287)	Solve the problem.			5 .	
A) 9 ^x ln 9 + C	B) $\frac{\ln x}{\ln 9}$ + C	C) $\frac{(\ln x)^2}{2 \ln 9} + C$	D) $\frac{\ln 9 (\ln x)^2}{2} + C$		295) Find the volume of the $x = 2$, and $y = 0$ about the formula of the formula $x = 2$, and $y = 0$.		y revolving the area boun	ded by $y = \frac{1}{\sqrt{2x+1}}$, $x = 0$,	, 295)
Find the value of df^{-1}/dx at $x = f(a)$).				A) $\frac{25}{2}\pi \ln(2)$	B) $\frac{25}{2}\pi \ln(5)$	C) $\frac{5\sqrt{2}}{2}\pi \ln(5)$	D) $\frac{5}{2}\pi \ln (2)$	
288) $f(x) = 3x + 9$, $a = 2$. 1		288)	4	2	2	2	
A) 9	B) $\frac{1}{3}$	C) $\frac{1}{9}$	D) 3		Find the derivative of y with resp 296) $y = \sinh^{-1} (\cos x)$				296)
A value of sinh x or cosh x is given other indicated hyperbolic function		d the identity cosh ² x – sin	$h^2 x = 1$ to find the value of the transformed set of the transfo	lue of the	A) $\frac{-\sin x}{\sqrt{1 + \cos^2 x}}$	B) $\frac{1}{\sqrt{1 + \cos^2 x}}$	C) $\frac{-\sin x}{\sqrt{1+x^2}}$	D) - sin x	
289) $\sinh x = -\frac{5}{12}$, $\cosh x =$				289)	Solve the problem.				
A) $-\frac{13}{12}$	B) 13 12	C) 169 144	D) $\frac{12}{13}$		297) Find the length of the cu				297)
Evaluate the integral.		-			A) 3 + ln 2	B) 2 + ln 3	C) $3 + \frac{\ln 2}{2}$	D) $\frac{\ln 2}{2}$	
290) $\int \frac{-(\cot^{-1} t)^4}{1+t^2} dt$				290)	Simplify the expression.				
A) $\sqrt{\cot^{-1}t} + C$	B) $4(\cot^{-1}t)^{3} + C$	C) -4(cot ⁻¹ t) ⁵ + C	D) $\frac{(\cot^{-1} t)^5}{1} + C$		298) eln 1.6 A) 4.95	B) 0.47	C) 1.6	D) 4.35	298)
	5) ACOL - 1) T C	Cy Your of the	5 -+ C		Rewrite the expression in terms of			,	
Find the limit. 291) $\lim_{x \to \infty} \frac{2\sqrt{x^2 - 1}}{x^2 - 1}$				291)	299) $(\sinh x + \cosh x)^3$	-			299)
291) $\lim_{x \to 1^+} \frac{2\sqrt{x^2 - 1}}{\sec^{-1} x}$		1		²⁷¹⁾	A) $\frac{e^{3x}}{4}$	B) e ^{3x}	C) $e^{3x} - e^{-3x}$	D) e ^{x³}	
A) 2	B) -2	C) $\frac{1}{2}$	D) 1		Solve the problem. 300) A loaf of bread is remov	red from an ouron at 250	° F and cooled in a room -	hose temperature is 70° F	300)
Rewrite the expression in terms of	exponentials and simpl	ify the results.		202)	If the bread cools to 210	° F in 20 minutes, how 1	nuch longer will it take the	e bread to cool to 170° F.	
292) sinh (7 ln x) A) $\frac{1}{2} \left[x^7 + \frac{1}{x^7} \right]$	B) $\frac{7}{2}\left(x-\frac{1}{x}\right)$	C) 2x	D) $\frac{1}{2}\left(x^7 - \frac{1}{x^7}\right)$	292)	A) 30 min	B) 10 min	C) 21 min	D) 11 min	301)
²(×′)	-(×)		-(x/)		301) A region in the first qua the left by the y-axis, ar by revolving the region	nd on the right by the li	e by the curve y = tanh x, ne x = ln 6. Find the volun		301)
					A) $\pi \left[\ln 6 - \frac{35}{37} \right]$	B) 0	C) $-\frac{35}{37}$	D) 2π	
					1				
		47					48		
		47					48		

Rewrite the expression in terms of 302) ln(cosh 7x - sinh 7x) + lr A) -1 Find the formula for df-1/dx.		lify the results. C) –1x	D) 13x	302)	Find the inverse of the function. 311) $f(x) = \sqrt{x} - 7, x \ge 0$ A) $f^{-1}(x) = x + 7, x \ge 7$ B) $f^{-1}(x) = (x + 7)^2, x \ge 7$ C) $f^{-1}(x) = -(x + 7)^2, x \ge 7$ D) $f^{-1}(x) = (x - 7)^2$	311)
303) $f(x) = 243x^3$ A) $\frac{1}{15x^{4}/5}$	B) 1215x ⁴	C) 15x ⁴	D) $\frac{x^{1/5}}{3}$	303)	Express as a single logarithm and, if possible, simplify. $312) \frac{1}{2} \ln (46) - \ln 2$	312)
Evaluate the integral. $304) \int x^{6}e^{-x^{7}} dx$ $A) - \frac{1}{7}e^{-x^{7}} + C$	B) -7e ^{-x⁸} + C	C) e ^{-x7} + C	D) $-\frac{1}{7}e^{-x^8} + C$	304)	$ \begin{array}{c} A) \ln \left(2t^3\right) & B) \ln \left(t^3\right) & C) \ln 2 \left(t^3 - 1\right) & D) \ln \left(1t^3\right) \\ \end{array} \\ Find the derivative of y with respect to x, t, or \theta, as appropriate.313) y = 3e^{\theta}(\sin \theta - \cos \theta) \\ A) 6e^{\theta}(\sin \theta - \cos \theta) & B) 6e^{\theta} \sin \theta \\ C) 3e^{\theta}(\sin \theta - \cos \theta) + 3e^{\theta} & D) 0 \end{array} $	313)
Rewrite the following without usi $305) \tan\left(\cos^{-1}\frac{u}{5}\right)$ A) $\frac{\sqrt{u^2 - 25}}{u}$	ng trigonometric or inv B) u²√25	-	D) $\frac{\sqrt{25 - u^2}}{u}$	305)	Evaluate the integral. 314) $\int 7 \cosh\left[\frac{x}{2} - \ln 5\right] dx$ A) $14 \sinh\left[\frac{x}{2} - \ln 5\right] + C$ B) $7 \sinh\left[\frac{x}{2} - \ln 5\right] + C$ C) $\frac{14}{5} \sinh\left[\frac{x}{2} - \ln 5\right] + C$ D) $\frac{7}{2} \sinh\left[\frac{x}{2}\right] + C$	314)
Find the derivative of y with respective of y with respective of y = $(\cos \theta)\sqrt{11}$ A) $-\sqrt{11}(\cos \theta)\sqrt{11}-1$ since C $\sqrt{11}(\cos \theta)\sqrt{11}-1$	-	ariable. B) $-\sqrt{11} \cos \theta \sin \theta$ D) $-(\cos \theta)\sqrt{11}-1 \sin \theta$	ð	306)	 Solve the problem. 315) Locate and identify the absolute extreme values of ln (sin x) on [π/6, 3π/4] A) Absolute maximum at (π/2, 0); absolute minimum at (π/6, - ln 2) 	315)
Evaluate the integral. $307) \int \frac{\sec x \tan x}{4 + \sec x} dx$ A) 4 ln (4 + sec x) + C C) - ln (4 + sec x) + C		B) -4 - sec x + C D) 4 ln sec x + C		307)	B) Absolute maximum at $\left(3\pi/4, \frac{\ln 2}{2}\right)$; absolute minimum at $(\pi/2, 0)$ C) Absolute maximum at $(\pi/6, \ln 2)$; absolute minimum at $(\pi/2, 0)$ D) Absolute maximum at $(\pi/2, 0)$; absolute minimum at $\left(3\pi/4, -\frac{\ln 2}{2}\right)$	
Evaluate exactly. 308) $\operatorname{csc}(\tan^{-1}1 + \operatorname{csc}^{-1}1)$ A) $\frac{\sqrt{2}}{2}$	B) 0	$C)\sqrt{2}$	D) -\sqrt{2}	308)	Find the slowest growing and the fastest growing functions as $x \rightarrow \infty$. 316) $y = 2x^2 + 9x$ $y = e^x$ $y = e^x/6$ $y = \log_7 x$	316)
Find the inverse of the function. 309) $f(x) = 2x - 5$ A) $f^{-1}(x) = \frac{x}{2} + 5$		B) Not a one-to-one	function	309)	A) Slowest: $y = e^{x}/6$ Fastest: $2x^2 + 9x$ B) Slowest: $2x^2 + 9x$	
C) $f^{-1}(x) = \frac{x-5}{2}$		D) $f^{-1}(x) = \frac{x+5}{2}$			Fastest: y = e ^x C) Slowest: y = log7x Fastest: y = e ^x and y = e ^x /6 grow at the same rate	
Rewrite the expression in terms of 310) cosh 3x - sinh 3x A) 2e ^{-3x}	f exponentials and simp B) –3x	lify the results. C) e ^{-3x}	D) e ^{3x} - e ^{-3x}	310)	D) Slovest $y = \log x$ Fastest: $y = \log x$	
		49			50	

Evaluate the integral. 317) $\int_{-\ln 3}^{0} 9 \sinh^2\left(\frac{x}{2}\right) dx$ A) $-\frac{64}{9}$	$B) \frac{9}{2} \left(\frac{4}{3} + \ln 3 \right)$	$C)\frac{9}{2}\left(\frac{4}{3}-\ln 3\right)$	D) 3(e ⁶ - e ⁻⁶)	317)
Rewrite the ratio as a ratio of n $318) \frac{\log_2 x}{\log_8 x}$ A) ln 3	atural logarithms and sim	plify. C) $\frac{1}{2^2}$	D) 2 ²	318)
Find the derivative of y. 319) y = sech (20) (1 - ln se A) 2 sech (20) tanh C) 1 - 2 sech (20) tan	(20) ln (20)	B) 2 sech (20) tanh (D) sech (20) tanh (2		319)
Rewrite the following without 320) $\sin\left(\tan^{-1}\frac{u}{\sqrt{3}}\right)$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$		verse trigonometric funct C) $u\sqrt{u^2 + 3}$	tions. D) $\frac{u\sqrt{u^2 - 3}}{u^2 - 3}$	320)
Solve the problem. 321) Find the length of the A) 8 + 4 ln 2	curve x = $\frac{y^2}{32}$ - 4 ln $\left(\frac{y}{3}\right)$ 8 = B) 8 + 4 ln $\frac{2}{3}$	≤ y ≤ 16. C) 6 + 4 ln 2	D) 6 + 4 ln $\frac{2}{3}$	321)
Evaluate the integral. 322) $\int_{\pi/8}^{\pi/4} 2 \cot (2\theta) d\theta$ A) $-\frac{\ln 2}{2}$	B) $\frac{\ln 4}{2}$	C) $\frac{\ln 2}{2}$	D) ln 2	322)

323)

the limit. 324) $\lim_{x \to 0} \frac{\sin^{-1} 4x}{x}$				324)	Evaluate exactly. 332) $\cos^{-1}\left[\cos\left(-\frac{\pi}{3}\right)\right]$			
A) 4	B) 1	C) $\frac{1}{4}$	D) ∞		A) $\frac{4\pi}{3}$	B) $-\frac{3}{\pi}$	C) $\frac{\pi}{3}$	D) $-\frac{\pi}{3}$
ess the value of the inverse	hyperbolic function in t	erms of natural logarithm	15.		Determine whether the integral 333) $\int \frac{1}{x} + \frac{6}{5} \cot^{-1}\frac{3}{5}x dx$	ion formula is correct.	v est=1 ³ v + C	
325) csch ⁻¹ $\left[\frac{9}{4}\right]$	(4+\sqrt{97})	3	(4-\97)	325)	A) No	5	B) Yes	
A) ln √97	B) $\ln\left(\frac{1}{9}\right)$	C) $\ln \frac{3}{2}$	D) $\ln\left(\frac{4-\sqrt{97}}{9}\right)$		Evaluate the integral.			
aluate the integral. $326) \int_{1}^{\ln 9} \tanh x dx$				326)	$334) \int_{1}^{7} \frac{4\ln x}{x} dx$			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	B) 119 18	C) $\ln \frac{164}{45}$	D) ln <u>119</u>		A) $\frac{4 \ln 7 - 1}{\ln 4}$	B) $\frac{27}{\ln 4}$	C) $\frac{4 \ln 7}{\ln 4}$	D) <u>16,380</u> ln 4
		10	D) III 18		Solve for y or k, as appropriate.			
nd the derivative of y with resp 327) $y = 7\cos \pi \theta$				327)	335) $\ln(1 - 10y) = x$ A) $\frac{1 - e^x}{10}$	B) $\frac{e^{x} - 1}{10}$	C) $\frac{1 - \ln x}{10}$	D) e ^x + 9
A) $-7\cos \pi\theta \ln 7 \sin \pi\theta$ C) $-\pi7\cos \pi\theta \ln 7 \sin \pi\theta$		 B) 7cos πθ D) π7cos πθ ln 7 			Answer the question appropria			
nd the inverse of the function. $328) f(x) = x^3 + 7$				328)	336) Find the linearization A) $L(x) = 0.32x - 0.6$	of $f(x) = \log 5^{x}$ at $x = 5$.	Round the coefficients to 2 B) $L(x) = 0.12x + 0.$	-
A) $f^{-1}(x) = \sqrt[3]{x} - 7$		B) Not a one-to-on	e function		C) $L(x) = 0.12x + 1$		D) $L(x) = x - 5$	
C) $f^{-1}(x) = \sqrt[3]{x+7}$	natural logovith	D) $f^{-1}(x) = \sqrt[3]{x-7}$			Find the inverse of the function 337) $f(x) = \sqrt{x-9}, x \ge 9$			
valuate the integral in terms of 329) $\int_{4}^{8} \frac{dx}{\sqrt{x^2 - 9}}$	natarai iogarittiins.			329)	A) f ⁻¹ (x) = x ² - 9, x = C) Not a one-to-one		B) $f^{-1}(x) = x^2 + 9$, x D) $f^{-1}(x) = x + 9$, x \ge	
A) $\ln \left(\frac{8 + \sqrt{55}}{16} \right) - 1$	B) $\ln\left(\frac{8+\sqrt{55}}{4}\right)$	C) ln 5	D) $\frac{1}{2} \ln \left(\frac{\sqrt{55}}{4} \right)$		Solve for y or k, as appropriate. 338) $\ln y = 4x + 3$			
nd the domain and range of the	. ,		2 4		338) In $y = 4x + 3$ A) $e^{4x} + 3$	B) 4x	C) 7	D) $\ln(4x+3)$
330) $f(x) = \frac{8}{x^2 + 1}, x \ge 0$	- inverse of the given it			330)	Determine whether the integral 339) $\int 36x \cos^{-1} 6x dx =$		$\frac{1-36x^2}{1-36x^2} + C$	
 A) Domain: (0, 8]; ran C) Domain: [0, ∞); rar 		 B) Domain and rang D) Domain: (-∞, 0}; 			$\begin{array}{c} 3599 \text{J} 568 \cos^{-1} 68 \text{dx} = \\ \text{A) Yes} \end{array}$	4	4 B) No	
nd the angle.	·O·· (v) v]				Find the limit.			
331) sin ⁻¹ 0 A) 0	π) π	C) $\frac{\pi}{2}$	D) π	331)	$\lim_{x \to -\infty} \csc^{-1} x$		_	D) $\frac{\pi}{2}$
A) U	B) $-\frac{\pi}{2}$	53	2,1		A) 0	B) - ∞	C) - $\frac{\pi}{2}$ 54	
write the expression in terms	-	53	5,1	341)	Find the slowest growing and t		54	
	-	53	D) e ^{5x} - e ^{-5x}	341)	Find the slowest growing and t 347) y = ln 2x y = 8 ln x		54	
ewrite the expression in terms 341) cosh 5x + sinh 5x A) e ^{5x} nswer the question appropriat 342) Where does the periodi	c exponentials and sim B) 5x sety. ic function f(x) = 4esin(x,	plify the results. C) 2e ^{5x}	D) e ⁵ x - e ⁻⁵ x ues?	341) 342)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$		54	
ewrite the expression in terms 341) cosh 5x + sinh 5x A) e ⁵ x nswer the question appropriate	- of exponentials and sim B) 5x ely. c function f(x) = 4e ^{sin} (x.	53 plify the results. C) 2e ⁵ x	D) e ⁵ x – e ⁻⁵ x ues? is an odd integer		Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$	re fastest growing funct and y = 8 ln x grow at th	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms (341) $\cosh 5x + \sinh 5x$ A) e^{5x} nswer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is raluate the integral.	- of exponentials and sim B) 5x ely. c function f(x) = 4e ^{sin} (x.	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i	D) e ⁵ x – e ⁻⁵ x ues? is an odd integer	342)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest $y = \ln 2x$ B) Slowest $y = \ln 2x$ Fastest: $y = \sqrt{x}$	ne fastest growing funct	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms 341) $\cosh 5x + \sinh 5x$ A) e^{5x} nswer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$	- of exponentials and sim B) 5x ely. is function f(x) = 4e ^{sin} (x. an even integer	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where	D) e ⁵ X - e ⁻⁵ X ues? is an odd integer k is an even integer		Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \ln 2x$ B) Slowest $y = \ln 2x$	re fastest growing funct and y = 8 ln x grow at th	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} asswer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is relute the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem.	of exponentials and sim B) $5x$ ely. ic function $f(x) = 4e^{\sin(x)}$ an even integer B) $12 e\sqrt{3x} + C$	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k : D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$	342)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ D) Slowest: $y = \frac{1}{x}$	re fastest growing funct and y = 8 ln x grow at th	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms (341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate (A) x is an odd integer (C) $x = \pm k\pi$ where k is raluate the integral. (343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ (A) $6 e\sqrt{3x} + C$ (b) the problem. (344) By what factor k do yoo to add 8 db to the soun to be for the soun	of exponentials and sim B) $5x$ ely. ic function $f(x) = 4e^{sin(x,x)}$ an even integer B) $12 e\sqrt{3x} + C$ u have to multiply the in d level?	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k D) $x = k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier	342)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$ B) Slowest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$	re fastest growing funct and y = 8 ln x grow at th	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms (341) $\cosh 5x + \sinh 5x$ A) e^{5x} nswer the question appropriate (A) x is an odd integer (C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ (A) $6 e\sqrt{3x} + C$ (Sive the problem. 344) By what factor k do you to add 8 db to the soun (A) $k = 6.3$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e\sqrt{3x} + C$ u have to multiply the in	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k : D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$	342) 343)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ D) Slowest: $y = \frac{1}{x}$	the fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th	54 tions as x→∞. ae same rate. he same rate.	
ewrite the expression in terms (341) $\cosh 5x + \sinh 5x$ A) e^{5x} nswer the question appropriate (A) x is an odd integer (C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ (A) $6 e\sqrt{3x} + C$ (A) $6 e\sqrt{3x} +$	of exponentials and sim B) $5x$ ely. ic function $f(x) = 4e^{sin(x,x)}$ an even integer B) $12 e\sqrt{3x} + C$ u have to multiply the in d level?	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k D) $x = k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier	342) 343)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ B) Slowest: $y = \ln 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral.	the fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th	- 54 tions as x→∞. ae same rate.	
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} answer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is ratuate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 ratuate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$	of exponentials and sim B) 5x ety. an even integer B) 12 e $\sqrt{3x}$ + C u have to multiply the in d level? B) k = 9	53 plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier	342) 343) 344)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ B) Slowest: $y = \ln 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \delta \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1 + x)}$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$	the fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th	54 tions as x→∞. ae same rate. he same rate.	
ewrite the expression in terms (341) $\cosh 5x + \sinh 5x$ A) e^{5x} nswer the question appropriate (A) x is an odd integer (C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ (A) $6 e\sqrt{3x} + C$ (A) $6 e\sqrt{3x} +$	of exponentials and sim B) 5x ety. an even integer B) 12 e $\sqrt{3x}$ + C u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k D) $x = k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier	342) 343) 344)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ B) Slowest: $y = \ln 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \delta \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1 + x)}$ A) $\frac{1}{2} \sin^{-1} \sqrt{x} + C$ 349) $\int_{0}^{7\pi/4} \tan \frac{x}{7} dx$	The fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th $and y = 8 \ln x$ grow at th B) $\frac{1}{2} \ln x + C$	tions as $x \rightarrow \infty$. the same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$	D) $\frac{1}{2}$ tan ⁻¹ \sqrt{x} +
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} answer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is ratuate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 ratuate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	53 plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = k\pi$ where k D) $x = k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ ues? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier	342) 343) 344)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ B) Slowest: $y = \ln 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \delta \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1 + x)}$ A) $\frac{1}{2} \sin^{-1} \sqrt{x} + C$ 349) $\int \frac{7\pi/4}{2} \tan \frac{x}{7} dx$ A) $\frac{2}{-7\ln 2}$	The fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th B) $\frac{1}{2} \ln x + C$ B) $\frac{-7\sqrt{2}}{2}$	54 tions as $x \rightarrow \infty$. we same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$ C) $\frac{7\sqrt{2}}{2}$	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$
write the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is aluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ Ive the problem. 344) By what factor k do you to add 8 db to the soun A) $k = 6.3$ aluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $-\frac{1}{10} \cosh 10x + C$ and the derivative of y with resg 346) $y = \sin e^{-\theta^7}$ A) $\cos e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$ or $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and f 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ Fastest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1+x)}$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ 349) $\int \frac{7\pi/4}{2} \tan \frac{x}{7} dx$ A) $\frac{-7 \ln 2}{2}$ Express the value of the inverses	The fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th B) $\frac{1}{2} \ln x + C$ B) $\frac{-7\sqrt{2}}{2}$	54 tions as $x \rightarrow \infty$. we same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$ C) $\frac{7\sqrt{2}}{2}$	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$
write the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} sswer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is aluate the integral. 343) $\int \frac{12e\sqrt{3}x}{2\sqrt{x}} dx$ A) $6e\sqrt{3x} + C$ live the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 aluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $= \frac{1}{10} \cosh 10x + C$ dthe derivative of y with resp 346) $y = \sin e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k D) $x = \pm k\pi / 4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ B) Slowest: $y = \ln 2x$ B) Slowest: $y = \ln 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \delta \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1 + x)}$ A) $\frac{1}{2} \sin^{-1} \sqrt{x} + C$ 349) $\int \frac{7\pi/4}{2} \tan \frac{x}{7} dx$ A) $\frac{2}{-7\ln 2}$	The fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th B) $\frac{1}{2} \ln x + C$ B) $\frac{-7\sqrt{2}}{2}$	54 tions as $x \rightarrow \infty$. we same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$ C) $\frac{7\sqrt{2}}{2}$	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 raluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $-\frac{1}{10} \cosh 10x + C$ and the derivative of y with resg 346) $y = \sin e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$ or $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$ Fastest: $y = \pi 2x$ B) Slowest: $y = \ln 2x$ Fastest: $y = \pi 2x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1+x)}$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ 349) $\int_{0}^{7\pi/4} \tan \frac{x}{7} dx$ A) $\frac{-7 \ln 2}{2}$ Express the value of the inverses 350) $\cosh^{-1}\left(\frac{13}{5}\right)$ A) $\ln\left(\frac{13}{5}+\sqrt{170}\right)$ Simplify the expression.	The fastest growing funct and y = 8 ln x grow at th and y = 8 ln x grow at th B) $\frac{1}{2}$ ln x + C B) $\frac{-7\sqrt{2}}{2}$	54 tions as x→∞. te same rate. he same rate. C) tan ⁻¹ \sqrt{x} + C C) $\frac{7\sqrt{2}}{2}$ terms of natural logarithm	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$ ns.
twrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is statuate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ live the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 aluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $-\frac{1}{10} \cosh 10x + C$ and the derivative of y with resg. 346) $y = \sin e^{-\theta^7}$ A) $\cos e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$ or $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and t $347) y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$ B) Slowest: $y = \frac{1}{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. $348) \int \frac{dx}{2\sqrt{x}(1+x)}$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ $349) \int \int_{0}^{7\pi/4} \tan \frac{x}{7} dx$ A) $\frac{1}{2} - \frac{7 \ln 2}{2}$ Express the value of the inverses $350) \cosh^{-1}\left(\frac{13}{5}\right)$ A) $\ln\left(\frac{13}{5} + \sqrt{170}\right)$	The fastest growing funct and y = 8 ln x grow at th and y = 8 ln x grow at th B) $\frac{1}{2}$ ln x + C B) $\frac{-7\sqrt{2}}{2}$	54 tions as x→∞. te same rate. he same rate. C) tan ⁻¹ \sqrt{x} + C C) $\frac{7\sqrt{2}}{2}$ terms of natural logarithm	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$ ns.
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 raluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $-\frac{1}{10} \cosh 10x + C$ and the derivative of y with resg 346) $y = \sin e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$ or $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$ B) Slowest: $y = \sqrt{x}$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ C) Slowest: $y = \frac{1}{x}$ Fastest: $y = 8 \ln x$ D) Slowest: $y = \frac{1}{x}$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2dx}(1 + x)$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ 349) $\int \frac{7\pi/4}{2} \tan \frac{x}{7} dx$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ 349) $\int \frac{7\pi/4}{2} \tan \frac{x}{7} dx$ A) $\frac{1}{5} \sin^{-1}(\frac{13}{5})$ A) $\ln \left(\frac{13}{5} + \sqrt{170}\right)$ Simplify the expression. 351) $4\log 4 8$ A) 32 Find the derivative of y with re	The fastest growing funct and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th and $y = 8 \ln x$ grow at th B) $\frac{1}{2} \ln x + C$ B) $\frac{-7\sqrt{2}}{2}$ hyperbolic function in B) $\ln 4$ B) $\log 4 8$	54 tions as x→∞. as same rate. the same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$ C) $\frac{7\sqrt{2}}{2}$ terms of natural logarithm C) ln 5 C) 8	D) $\frac{1}{2} \tan^{-1} \sqrt{x} +$ D) $\frac{7 \ln 2}{2}$ ns. D) $\ln \frac{1}{5}$
ewrite the expression in terms of 341) $\cosh 5x + \sinh 5x$ A) e^{5x} assuer the question appropriate 342) Where does the periodi A) x is an odd integer C) $x = \pm k\pi$ where k is raluate the integral. 343) $\int \frac{12e\sqrt{3x}}{2\sqrt{x}} dx$ A) $6 e\sqrt{3x} + C$ bive the problem. 344) By what factor k do you to add 8 db to the soun A) k = 6.3 raluate the integral. 345) $\int \sinh 10x dx$ A) $\cosh^{-1} 10x + C$ C) $-\frac{1}{10} \cosh 10x + C$ and the derivative of y with resg 346) $y = \sin e^{-\theta^7}$	of exponentials and sim B) 5x ely. is function $f(x) = 4e^{\sin(x)}$. an even integer B) 12 $e^{\sqrt{3x}} + C$ u have to multiply the in d level? B) k = 9	plify the results. C) $2e^{5x}$ (2) take on its extreme val B) $x = \pm k\pi$ where k i D) $x = \pm k\pi/4$ where C) $\sqrt{3} e^{\sqrt{3x}} + C$ tensity of I of the sound fr C) $k = 2.2$ B) $\cosh 10x + C$ D) $\frac{1}{10} \cosh 10x + C$ or $\frac{1}{10} \cosh 10x + C$	D) $e^{5x} - e^{-5x}$ uses? is an odd integer k is an even integer D) $4\sqrt{3} e^{\sqrt{3x}} + C$ om your audio amplifier D) $k = 0.9$	342) 343) 344) 345)	Find the slowest growing and t 347) $y = \ln 2x$ $y = 8 \ln x$ $y = \frac{1}{x}$ $y = \sqrt{x}$ A) Slowest: $y = \sqrt{x}$ Fastest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ C) Slowest: $y = \ln 2x$ Fastest: $y = \sqrt{x}$ Evaluate the integral. 348) $\int \frac{dx}{2\sqrt{x}(1+x)}$ A) $\frac{1}{2}\sin^{-1}\sqrt{x} + C$ 349) $\int \frac{7\pi/4}{0} \tan \frac{x}{7} dx$ A) $\frac{-7\ln 2}{2}$ Express the value of the inverses 350) $\cosh^{-1}\left(\frac{13}{5}\right)$ A) $\ln\left(\frac{13}{5} + \sqrt{170}\right)$ Simplify the expression. 351) $4^{\log 4} 8$ A) 32	The fastest growing funct and y = 8 ln x grow at th and y = 8 ln x grow at th and y = 8 ln x grow at th B) $\frac{1}{2} \ln x + C$ B) $\frac{-7\sqrt{2}}{2}$ hyperbolic function in B) ln 4 B) log4 8 spect to x, t, or 0, as appr	54 tions as x→∞. as same rate. the same rate. the same rate. C) $\tan^{-1}\sqrt{x} + C$ C) $\frac{7\sqrt{2}}{2}$ terms of natural logarithm C) ln 5 C) 8	D) $\frac{1}{2} \tan^{-1} \sqrt{x} + D$ D) $\frac{7 \ln 2}{2}$ ns. D) $\ln \frac{1}{5}$ D) 4

olve for y or k, as appropriate. 353) 100e ^{5k} = 700				353)	Find the derivative of y with respect to 361) $y = 4x^4 \sin^{-1} x$	pect to x.			361)
A) $\ln\left(\frac{7}{5}\right)$	B) $\frac{e^7}{5}$	C) $\frac{\ln 600}{5}$	D) $\frac{\ln 7}{5}$		A) $\frac{4x^4}{\sqrt{1-x^2}}$ + 16x ³ sin	1 ⁻¹ x	B) $\frac{4x^4}{1+x^2}$ + 16x ³ sin ⁻	-1 _x	-
cpress the value of the inverse hy	perbolic function in ter	ms of natural logarithms.			$C) \frac{4x^4}{\sqrt{1-x^2}}$		D) $\frac{1}{\sqrt{1-x^2}} + 16x^3$		
354) sech ⁻¹ $\left(\frac{12}{13}\right)$				354)			√1 - x²		
A) $\ln \frac{2}{3}$	B) Undefined	C) $\ln \frac{18}{13}$	D) $\ln \frac{3}{2}$		Evaluate the integral in terms of	natural logarithms.			
se logarithmic differentiation to	find the derivative of y	with respect to the indepe	ndent variable.		362) $\int_{0}^{5\sqrt{3}} \frac{dx}{\sqrt{25 + x^2}}$				362)
355) $y = 5t\sqrt{t}$ A) $\frac{5t\sqrt{t} - 1(\ln 5t)}{5t\sqrt{t} - 1(\ln 5t)}$	B) $\frac{5t\sqrt{t}}{\sqrt{t}} \left(\frac{1}{2}\ln 5t - 1\right)$	C) $5t \frac{1}{2} \ln 5t - 1$	D) $\frac{1}{\sqrt{t}} \left(\frac{1}{2} \ln 5t - 1 \right)$	355)	A) $\ln(\sqrt{2} + \sqrt{3})$	$P(1-(\sqrt{2}+2))$	$(\sqrt{3}+2)$	D) $\ln(\sqrt{2} + 3)$	
	$\sqrt{t} \left(2^{-1}\right)$	[2	√t[2]		A) in $(\sqrt{2} + \sqrt{3})$	B) $\ln(\sqrt{3} + 2)$	C) III (5)	D) III (42 + 3)	
blve for y or k, as appropriate. $356) \ln (y - 39) = 4x$				356)	A value of sinh x or cosh x is giv other indicated hyperbolic funct	ion.	nd the identity cosh ² x – s	$\sinh^2 x = 1$ to find the v	value of the
A) ln (4x) + 39	B) $\frac{4x+39}{e}$	C) 4x + 39	D) e ^{4x} + 39		363) $\cosh x = \frac{5}{3}, x > 0, \sinh x = \frac{5}{3}, x > 0$				363)
press as a single logarithm and,	if possible, simplify.				A) $-\frac{4}{3}$	B) $\frac{3}{5}$	C) $\frac{16}{9}$	D) $\frac{4}{3}$	
357) ln (72x + 36) - 2 ln 6 A) ln (6x + 2)	B) ln (1296(2x + 1))	C) ln (72x)	D) ln (2x + 1)	357)	Use logarithmic differentiation	o find the derivative of y	with respect to the indep	endent variable.	
nd the derivative of y with respe	ct to the appropriate var	iable.		250)	364) $y = (\sin x)^{\cos x}$ A) $\cos x \ln (\sin x)$		B) cos x cot x - ln (sin	1 x)	364)
358) $y = (6 - 6\theta) \tanh^{-1} \theta$ A) $\frac{6}{1 - \theta} - 6 \tanh^{-1} \theta$		B) $\frac{-6}{1+\theta}$		358)	C) $(\sin x)^{\cos x}(\cos x \cos x)$		D) cos x cot x - sin x l	n(sin x)	
C) $\frac{6+6\theta}{1+\theta^2}$ = 6 tanh ⁻¹ θ		D) $\frac{6}{1+\theta} = 6 \tanh^{-1} \theta$			Find the derivative of y with response of y = $\ln \frac{1 + \sqrt{x}}{\sqrt{2}}$	pect to x, t, or θ, as approp	priate.		365)
1 1 0		$1 + \Theta$			$A) \frac{-4 - 3\sqrt{x}}{2x}$	B) $\frac{4-3\sqrt{x}}{2x(1+\sqrt{x})}$	C) $\frac{-4 - 3\sqrt{x}}{2(1 + \sqrt{x})}$	D) $\frac{-4-3\sqrt{x}}{2x(1+\sqrt{x})}$	
nd the derivative of y with respensive 359 y = sin ⁻¹ (e ⁵ t)				359)		$2x(1+\sqrt{x})$	$2(1 + \sqrt{x})$	$2x(1+\sqrt{x})$	
A) $\frac{5 e^{5t}}{\sqrt{1 - e^{25t}}}$	B) $\frac{e^{5t}}{\sqrt{1 - e^{10t}}}$	C) $\frac{-5 e^{5t}}{\sqrt{1 - e^{10t}}}$	D) $\frac{5 e^{5t}}{\sqrt{1 - e^{10t}}}$		Evaluate the integral. $\frac{1}{2} \int_{-\infty}^{\ln 3} dx dx$				200
press the value of the inverse hy	perbolic function in ter	ms of natural logarithms.			$\begin{array}{c} 366) \int \ln 3 e^{x} dx \\ \ln 4 \end{array}$		0.4		366)
360) sinh ^{−1} (8) A) ln (8 - √65)	B) $\ln(8 + \sqrt{65})$	C) ln 16	D) $\ln (8 + \sqrt{63})$	360)	A) 7 Solve the initial value problem.	B) -1	C) 1	D) 6	
			•		$367) \frac{dy}{dx} = \frac{-4}{\sqrt{1-x^2}}, y(1) =$	-5			367)
					A) $y = 4 \sin^{-1} x + \frac{-10}{2}$		B) $y = 4 \sin^{-1} x - 9$		
					C) $y = 4 \cos^{-1} x$	2	D) $y = -4 \sin^{-1} x - 5$		
					C) $y = 4 \cos^{-x} x$				
		57			$C(y) = 4\cos^{-x} x$		58		
nd the derivative of v with respe	ct for x. L. or A as anoron						58		
	ct to x, t, or 8 , as approp			368)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$		58		375)
$368) y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$	ct to x, t, or θ, as approp	riate.		368)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$		B) 6(e ³ - e)		375)
	ct to x, t, or 0 , as approp		$\frac{1}{2}(4\sqrt{x}-1)$	368)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$				375)
368) $y = \int_{e^4\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$	exponentials and simpl x)	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$	$(4\sqrt{x} - 1)$	368)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12 \left[e^{3} + e^{-3} - e - \frac{1}{e} \right]$ Use logarithmic differentiation		B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$		375)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8}x} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4}\sqrt{x}$ C) $\ln t$ ewrite the expression in terms of	exponentials and simpl	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$	$(4\sqrt{x} - 1)$ D) $10x + \frac{6}{x}$		$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of 376 y = $\sqrt{\frac{x}{x+6}}$	o find the derivative of y	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$.		375) 376)
368) $y = \int_{e^{4\sqrt{x}}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 $\cosh(\ln x) + 4 \sinh(\ln A) 0$ live the problem.	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$	riate. B) $64xe^{8x} - 8e^4\sqrt{x}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$	D) $10x + \frac{6}{x}$	369)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of 376 y = $\sqrt{\frac{x}{x+6}}$	o find the derivative of y	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$.		
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 live the problem. 370) The barometric pressure	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile	riate. B) $64xe^{8x} - 8e^4\sqrt{x}$ D) $e^{8x} (8x - 1) - e^4\sqrt{x}$ ify the results. C) $10x$ s above sea level satisfies t	D) $10x + \frac{6}{x}$ he differential equation	369)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12 \left[e^{3} + e^{-3} - e - \frac{1}{e} \right]$ Use logarithmic differentiation	o find the derivative of y	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$		
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 live the problem. 370) The barometric pressure	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile	riate. B) $64xe^{8x} - 8e^4\sqrt{x}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$	D) $10x + \frac{6}{x}$ he differential equation	369)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12 \left\{ e^{3} + e^{-3} - e - \frac{1}{e} \right\}$ Use logarithmic differentiation of the second state of t	to find the derivative of y $\frac{1}{6}$	B) $6(e^{3} - e)$ D) $6\left(e^{3} + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$		376)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln x$) 0 live the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 p$. If the pressure 17,000 ft. A) 56.97 in.	exponentials and simpl x) B) $It\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in.	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in.	D) $10x + \frac{6}{x}$ the differential equation parometric pressure at D) 7.86 in.	369)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12\left[e^{3} + e^{-3} - e^{-\frac{1}{e}}\right]$ Use logarithmic differentiation of the second s	to find the derivative of y $\frac{1}{6}$	B) $6(e^{3} - e)$ D) $6\left(e^{3} + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$		376)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 write the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 p$. If the pressure 17,000 ft.	exponentials and simpl x) B) $It\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in.	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in.	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4.	369)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12 \left\{ e^{3} + e^{-3} - e - \frac{1}{e} \right\}$ Use logarithmic differentiation of the second state of t	o find the derivative of y 6 en. Use the definitions a ion.	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3}-e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$	$\sinh^2 x = 1$ to find the v	376)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 We the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 p$. If the pressure 17,000 ft. A) 56.97 in.	exponentials and simpl x) B) $It\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in.	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in.	D) $10x + \frac{6}{x}$ the differential equation parometric pressure at D) 7.86 in.	369) 370)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12 \left[e^{3} + e^{-3} - e - \frac{1}{e} \right]$ Use logarithmic differentiation of the second state of t	o find the derivative of y 6 en. Use the definitions a ion.	B) $6(e^{3} - e)$ D) $6\left(e^{3} + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$		376)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ everifie the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 blue the problem. 370) The barometric pressure $\frac{dp}{dh} = -0.2 \text{ p. If the pressure}$ 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) nd the angle.	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y =	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) 10x s above sea level satisfies t ches of mercury, find the B C) 1 in. $=\frac{1}{x+2}$, $x = 0$, $y = 0$, and $x = 1$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4.	369) 370) 371)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	 b find the derivative of y 6 cn. Use the definitions a ion. B) ⁵/₄ blanes perpendicular to the interval of th	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ The exact is at $x = -2$ and $x = 2$	$\sinh^2 x = 1$ to find the x D) $-\frac{5}{3}$ 2. The cross sections	376) zalue of th
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 Ive the problem. 370) The barometric pressure $\frac{dp}{dh} = -0.2 \text{ p. If the pressure}$ 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) $\tan^{-1} -1$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile ure at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y = B) ln (6)	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) 10x s above sea level satisfies t ches of mercury, find the B C) 1 in. $=\frac{1}{x+2}$, $x = 0$, $y = 0$, and $x = 1$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4.	369) 370)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	 b find the derivative of y c) <lic)< li=""> c) <lic)< li=""> c) <lic)< li=""> <lic< td=""><td>B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ we x-axis at $x = -2$ and $x = 2$ meters stretch from the cum</td><td>$\sinh^2 x = 1$ to find the x D) $-\frac{5}{3}$ 2. The cross sections</td><td>376) ralue of th 377)</td></lic<></lic)<></lic)<></lic)<>	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ we x-axis at $x = -2$ and $x = 2$ meters stretch from the cum	$\sinh^2 x = 1$ to find the x D) $-\frac{5}{3}$ 2. The cross sections	376) ralue of th 377)
368) $y = \int_{e^4\sqrt{x}}^{e^8x} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh $(\ln x) + 4 \sinh (\ln x) + 0$ write the problem. 370) The barometric pressure $\frac{dp}{dh} = -0.2 \text{ p. If the pressure}$ 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) tan ⁻¹ -1 A) $\frac{3\pi}{4}$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln(3)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left(e^{3} + e^{-3} - e^{-\frac{1}{e}}\right)$ Use logarithmic differentiation of 376) $y = \sqrt{\frac{x}{x+6}}$ A) $\left(\frac{1}{2}\right)\sqrt{\frac{x}{x+6}}\left(\frac{1}{x} - \frac{1}{x+6}\right)$ A value of sinh x or cosh x is giv other indicated hyperbolic funct 377) sinh x = $-\frac{3}{4}$, coth x = A) $-\frac{3}{5}$ Solve the problem. 378) The solid lies between perpendicular to the x-	 b find the derivative of y 6 cn. Use the definitions a ion. B) ⁵/₄ blanes perpendicular to tl axis are circles whose dia 	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ The exact is at $x = -2$ and $x = 2$	$\sinh^2 x = 1$ to find the x D) $-\frac{5}{3}$ 2. The cross sections	376) ralue of th 377)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln x$) 0 We the problem. 370) The barometric pressure $\frac{dp}{dh} = -0.2 p. If the pressings in the series of t$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln(3)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	by find the derivative of y $\frac{1}{6}$ en. Use the definitions a ion. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia $\hat{2}$, B) $\frac{9}{4}\pi^2$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the curve C) $\frac{81}{4}\pi^2$	$\sinh^2 x = 1 \text{ to find the y}$ $D) - \frac{5}{3}$ 2. The cross sections $rve y = -9/\sqrt{4 + x^2} \text{ to}$	376) ralue of th 377)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 live the problem. 370) The barometric pressure $\frac{dp}{dh} = -0.2 \text{ p. If the presses}$ 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) ad the angle. 372) tan 1 -1 A) $\frac{3\pi}{4}$ press as a single logarithm and, 373) $\ln(5x^2 - 15x) + \ln\left(\frac{1}{5x}\right)$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln(3)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371) 372)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	b find the derivative of y $\frac{1}{6}$ cn. Use the definitions a ion. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia axis are circles whose dia B) $\frac{9}{4}x^2$. better to x, t, or 0 , as appropriate	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the curring C) $\frac{81}{4}\pi^2$ priate.	$\sinh^2 x = 1 \text{ to find the } 1$ $D) -\frac{5}{3}$ 2. The cross sections rive $y = -9/\sqrt{4 + x^2}$ to $D) 81\pi$	376) value of th 377) 378) 379)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4}\sqrt{x}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 live the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) $\tan^{-1} -1$ A) $\frac{3\pi}{4}$ press as a single logarithm and,	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} = 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) 10x s above sea level satisfies t ches of mercury, find the B C) 1 in. $=\frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) ln (3) C) 0	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371) 372)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12\left[e^{3} + e^{-3} - e^{-\frac{1}{e}}\right]$ Use logarithmic differentiation of the second s	by find the derivative of y $\frac{1}{6}$ en. Use the definitions a ion. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia $\hat{2}$, B) $\frac{9}{4}\pi^2$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e - \frac{1}{e}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the curve C) $\frac{81}{4}\pi^2$	$\sinh^2 x = 1 \text{ to find the y}$ $D) - \frac{5}{3}$ 2. The cross sections $rve y = -9/\sqrt{4 + x^2} \text{ to}$	376) value of tt 377) 378) 379)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 twe the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) tar-1 -1 A) $\frac{3\pi}{4}$ press as a single logarithm and, 373) $\ln (5x^2 - 15x) + \ln (\frac{1}{5x})$ A) $\ln (5x^2 - 15x + \frac{1}{5x})$ C) $\ln (x - 3)$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln (3)$ C) 0 B) $\ln (x - 15)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371) 372)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	b find the derivative of y $\frac{-6}{-6}$ cn. Use the definitions a non. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia axis are circles whose dia B) $\frac{9}{4}x^2$. bett to x, t, or 6 , as approp B) $(x^2 + 3) e^x$ $(\sim\sqrt{3}))$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the current of $\frac{81}{4}\pi^2$ briate. C) $(2x - 2) e^x$	$\sinh^2 x = 1 \text{ to find the } 1$ $D) -\frac{5}{3}$ 2. The cross sections rive $y = -9/\sqrt{4 + x^2}$ to $D) 81\pi$	376) value of th 377) 378) 379)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4}\sqrt{x}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 live the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) tan ⁻¹ -1 A) $\frac{3\pi}{4}$ press as a single logarithm and, 373) ln ($5x^2 - 15x$) + ln $\left(\frac{1}{5x}\right)$ A) ln $\left(5x^2 - 15x + \frac{1}{5x}\right)$ C) ln (x - 3) aluate the integral.	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln (3)$ C) 0 B) $\ln (x - 15)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371) 372)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e^{-1}\frac{1}{e}\right]$ Use logarithmic differentiation of 376) $y = \sqrt{\frac{x}{x+6}}$ A) $\left(\frac{1}{2}\right)\sqrt{\frac{x}{x+6}}\left(\frac{1}{x} - \frac{1}{x-6}\right)$ A value of sinh x or cosh x is give other indicated hyperbolic funct 377) sinh $x = -\frac{3}{4}$, coth $x = A$) $-\frac{3}{5}$ Solve the problem. 378) The solid lies between perpendicular to the x -the curve $y = 9/\sqrt{4+x}$ A) $81\pi^2$ Find the derivative of y with response 379) $y = (x^2 - 2x + 5) e^x$ A) $(x^2 + 4x + 3) e^x$ Evaluate exactly.	b find the derivative of y $\frac{1}{6}$ en. Use the definitions a ion. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia $\frac{5}{2}$. B) $\frac{9}{4}\pi^2$. Detect to x, t, or θ , as approp B) $(x^2 + 3) e^x$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the curring C) $\frac{81}{4}\pi^2$ priate.	$\sinh^2 x = 1 \text{ to find the } 1$ $D) -\frac{5}{3}$ 2. The cross sections rive $y = -9/\sqrt{4 + x^2}$ to $D) 81\pi$	376) value of th 377) 378) 379)
368) $y = \int_{e^{4}\sqrt{x}}^{e^{8x}} \ln t dt$ A) $64e^{8x} - 4\sqrt{x}e^{4}\sqrt{x}$ C) $\ln t$ write the expression in terms of 369) 16 cosh ($\ln x$) + 4 sinh ($\ln A$) 0 dive the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure $\frac{dp}{dp} = -0.2 \text{ p.}$ If the pressure 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) tan ⁻¹ -1 A) $\frac{3\pi}{4}$ press as a single logarithm and, 373) $\ln (5x^2 - 15x) + \ln (\frac{1}{5x})$ A) $\ln (5x^2 - 15x) + \ln (\frac{1}{5x})$ C) $\ln (x - 3)$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln (3)$ C) 0 B) $\ln (x - 15)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$ D) 1	369) 370) 371) 372) 373)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e - \frac{1}{e}\right]$ Use logarithmic differentiation of the second state of the se	b find the derivative of y $\frac{-6}{-6}$ cn. Use the definitions a non. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia axis are circles whose dia B) $\frac{9}{4}x^2$. bett to x, t, or 6 , as approp B) $(x^2 + 3) e^x$ $(\sim\sqrt{3}))$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the current of $\frac{81}{4}\pi^2$ briate. C) $(2x - 2) e^x$	$\sinh^{2} x = 1 \text{ to find the v}$ $D) - \frac{5}{3}$ 2. The cross sections rve $y = -9/\sqrt{4 + x^{2}}$ to $D) 81\pi$ $D) \left(\frac{x^{3}}{3} + 3x + 5\right) e^{3}$	376) . value of th 377) . 378) .
A) $64e^{8x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) ln t everite the expression in terms of 369) 16 cosh (ln x) + 4 sinh (ln A) 0 olve the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p. If the pressure}$ 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) ind the angle. 372) tan ⁻¹ -1 A) $\frac{3\pi}{4}$ xpress as a single logarithm and, 373) ln $(5x^2 - 15x) + ln (\frac{1}{5x})$ A) ln $(5x^2 - 15x + \frac{1}{5x})$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the B C) 1 in. $= \frac{1}{x+2}, x = 0, y = 0, \text{ and } x = 0$ C) $\ln (3)$ C) 0 B) $\ln (x - 15)$	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$	369) 370) 371) 372)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ $A) -6$ $C) 12\left[e^{3} + e^{-3} - e^{-\frac{1}{e}}\right]$ Use logarithmic differentiation of the second s	b find the derivative of y $\frac{1}{6}$ cn. Use the definitions a ion. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia axis are circles whose dia B) $\frac{9}{4}x^2$. better to x, t, or 0 , as appropriate	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the curring C) $\frac{81}{4}\pi^2$ priate.	$\sinh^2 x = 1 \text{ to find the } 1$ $D) -\frac{5}{3}$ 2. The cross sections rive $y = -9/\sqrt{4 + x^2}$ to $D) 81\pi$	376) value of tl 377) 378) 378)
$368) y = \int_{e^{A_x}}^{e^{B_x}} \ln t dt$ A) $64e^{B_x} - 4\sqrt{x}e^{4\sqrt{x}}$ C) In t everifie the expression in terms of 369) 16 cosh (ln x) + 4 sinh (ln A) 0 blue the problem. 370) The barometric pressure $\frac{dp}{dp} = -0.2 \text{ p. If the pressi- 17,000 ft. A) 56.97 in. 371) Find the area bounded by A) 2 ln (6) and the angle. 372) tarr1 -1 A) \frac{3\pi}{4}spress as a single logarithm and,373) ln (5x2 - 15x) + ln (\frac{1}{5x})A) ln (5x^2 - 15x + \frac{1}{5x})C) ln (x - 3)valuate the integral.374) \int \frac{\cos x dx}{1 + 2 \sin x}$	exponentials and simpl x) B) $10\left(x + \frac{1}{x}\right)$ p at an altitude of h mile are at sea level is 29.92 in B) 15.71 in. y the x-axis, the curve y - B) ln (6) B) $\frac{-\pi}{4}$	riate. B) $64xe^{8x} - 8e^{4\sqrt{x}}$ D) $e^{8x} (8x - 1) - e^{4\sqrt{x}}$ ify the results. C) $10x$ s above sea level satisfies t ches of mercury, find the l C) 1 in. $=\frac{1}{x+2}$, $x = 0$, $y = 0$, and $x = 0$ C) ln (3) C) 0 B) ln (x - 15) D) ln (25x2(x - 3))	D) $10x + \frac{6}{x}$ he differential equation parometric pressure at D) 7.86 in. = 4. D) $\frac{1}{2} \ln (3)$ D) 1	369) 370) 371) 372) 373)	$375) \int_{1}^{9} 6 \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$ A) -6 C) $12\left[e^{3} + e^{-3} - e^{-\frac{1}{e}}\right]$ Use logarithmic differentiation 1 $376) y = \sqrt{\frac{x}{x+6}}$ A) $\left(\frac{1}{2}\right)\sqrt{\frac{x}{x+6}}\left(\frac{1}{x} - \frac{1}{x+6}\right)$ A value of sinh x or cosh x is giv other indicated hyperbolic funct $377) \sinh x = -\frac{3}{4}, \coth x =$ A) $\left(\frac{3}{2}\right)$ Solve the problem. 378) The solid lies between perpendicular to the x- the curve $y = 9/\sqrt{4+x}$ A) $81\pi^{2}$ Find the derivative of y with res $379) y = (x^{2} - 2x + 5) e^{x}$ A) $(x^{2} + 4x + 3) e^{x}$ Evaluate exactly. $380) \tan(\sec^{-1} 1) + \cos(\tan^{-1} A) - \frac{1}{2}$	b find the derivative of y $\frac{-6}{-6}$ cn. Use the definitions a non. B) $\frac{5}{4}$ blanes perpendicular to th axis are circles whose dia axis are circles whose dia B) $\frac{9}{4}x^2$. bett to x, t, or 6 , as approp B) $(x^2 + 3) e^x$ $(\sim\sqrt{3}))$	B) $6(e^3 - e)$ D) $6\left(e^3 + e^{-3} - e^{-\frac{1}{e}}\right)$ B) $3\sqrt{\frac{x}{x+6}}$ D) $\left(\frac{1}{2}\right)(\ln x - \ln(x+6))$ and the identity $\cosh^2 x - s$ C) $\frac{5}{16}$ the x-axis at $x = -2$ and $x = 2$ meters stretch from the current of $\frac{81}{4}\pi^2$ briate. C) $(2x - 2) e^x$	$\sinh^{2} x = 1 \text{ to find the v}$ $D) - \frac{5}{3}$ 2. The cross sections rve $y = -9/\sqrt{4 + x^{2}}$ to $D) 81\pi$ $D) \left(\frac{x^{3}}{3} + 3x + 5\right) e^{3}$	376)

d the derivative of y with respect to x, t, or θ , as approximately a second	•			387) y = e ^x				387)
382) $y = \int_{1}^{\sqrt{2x}} \ln t^2 dt$			382)	$y = \frac{e^{x}}{6}$ $y = x^{x}$				-
√×				$y = 7^{x}$				
A) ln 2x ²	B) ln x			A) Slowest: $y = x^{x}$ Fastest: $y = 7^{x}$				
				B) Slowest: $y = e^{x/6}$ Fastest: $y = x^x$				
C) $\frac{\sqrt{2x}\ln 2x }{2x} - \frac{\ln x }{2\sqrt{x}}$	D) -ln 2			C) Slowest: $y = e^{x/6}$ are	nd $y = e^{x}$ grow at the same	ne rate.		
ne function graphed below one-to-one?					nd y = e ^x grow at the sam	ne rate.		
383)			383)	Fastest: $y = 7^x$				
10				Evaluate exactly. 388) $\cos\left(\sin^{-1}\left(\frac{12}{13}\right)\right)$				388)
\ ⊈ ∕				(13)	_{B)} -12	C) $\frac{12}{5}$	D) $\frac{5}{13}$	
<				A) 13	b) 13	C) 5	<i>D</i>) 13	
				Find the inverse of the function. $389) f(x) = 7x^3 + 6$				389)
-10						3x		
A) No	B) Yes			A) Not a one-to-one fu	inction	B) $f^{-1}(x) = \sqrt[3]{\frac{x}{7}} - 6$		
swer the question appropriately.				C) $f^{-1}(x) = \sqrt[3]{\frac{x+6}{7}}$		D) $f^{-1}(x) = \sqrt[3]{\frac{x-6}{7}}$		
384) Find the linearization of $f(x) = \sin x$ at $x = 2$. Ro A) $L(x) = \cos x$	bund the coefficients to 2 decima B) $L(x) = 0.42x + 0.49$	al places.	384)	1		V Ý		
C) $L(x) = -0.42x + 0.07$	D) $L(x) = -0.42x + 1.74$			Find $\frac{dy}{dx}$.				
ve the initial value problem. 205 dy 5 1 (2) 7			205)	390) $\ln 6xy = e^{X+y}$ A) $\frac{y}{x}$	B) 2xyex+y	C) $\frac{e^{x+y}}{e^{6x}}$	D) $\frac{xye^{x+y} - y}{xye^{x+y} - y}$	390) _
385) $\frac{dy}{dx} = \frac{5}{x\sqrt{x^2 - 1}}, x > 1, y(2) = 5\pi$	-		385)	⁷³⁷ X	x + y	e6x	$x - xye^{x+y}$	
A) $y = 5 \sin^{-1} x + 5\pi$	B) $y = 5 \csc^{-1} x + \frac{2}{3} \pi$			Evaluate the integral. 391) $\int \cosh \frac{x}{2} dx$				201)
C) $y = 5 \sec^{-1} x + \frac{10}{3} \pi$	D) $y = 5 \sec^{-1} x$			$391) \int \cosh \frac{x}{4} dx$	_, X			391)
d the angle.				A) $-4 \sinh \frac{x}{4} + C$	B) $\sinh \frac{A}{4} + C$	C) $\sin^{-1}\frac{x}{4} + C$	D) 4 sinh $\frac{x}{4}$ + C	
386) $\sin^{-1}\frac{\sqrt{3}}{2}$			386)					
A) $\frac{\pi}{3}$ B) $\frac{3\pi}{4}$	C) $\frac{\pi}{4}$	D) $\frac{2\pi}{3}$						
	61					62		
to function counted below one to ano?	61			Evaluate the integral		62		
he function graphed below one-to-one? 392)	61		392)	Evaluate the integral. $399) \int \frac{dt}{5(tan^{-1}t)(1+t^2)}$		62		399) _
he function graphed below one-to-one? 392)	61		392)	399) $\int \frac{dt}{5(tan^{-1}t)(1+t^2)}$	B) <u>1</u> 2+ C		D) ¹ / ₂ ln tan ⁻¹ t + C	
	61		392)	399) $\int \frac{dt}{5(tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C	B) $\frac{1}{5(\tan^{-1}t)^2}$ + C	62 C) ln 5 tan ⁻¹ t + C	$D) \frac{1}{5} ln \tan^{-1}t + C$	
	61		392)	399) $\int \frac{dt}{5(tan^{-1}t)(1+t^2)}$	B) $\frac{1}{5(tan^{-1}t)^2}$ + C		D) $\frac{1}{5}\ln \tan^{-1}t + C$	
	61		392)	$399) \int \frac{dt}{5(tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression.	B) $\frac{1}{5(\tan^{-1}t)^2} + C$ B) 6		D) $\frac{1}{5}$ ln tan ⁻¹ t + C D) x ⁶	с С
	61		392)	$399) \int \frac{dt}{5(tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$		C) ln 5 tan ⁻¹ t + C		с С
	61 B) Yes		392)	$399) \int \frac{dt}{5(tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral.	B) 6	C) ln 5 tan ⁻¹ t + C		2
392)	B) Yes		392)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$	B) 6	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$	D) x ⁶	400)
$\begin{array}{c} 392) \\ & & & \\ & $	B) Yes plify the results.	D) -20x	392)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C	B) 6	C) ln 5 tan ⁻¹ t + C		400) _
392) 40 40 5 10 5 10 5 10 5 10	B) Yes plify the results. C) -10x	D) -20x		$399) \int \frac{dt}{5(tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-In x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x + 5)\sqrt{x^2 + 10x + 24}}$ A) $\frac{\sec^{-1}(x + 5)}{5} + C$ Find the limit. 402) Im sin ⁻¹ x	B) 6	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$	D) x ⁶	400)
392) 40^{-10} , 5^{-10} , $5^$	B) Yes uplify the results. C) -10x variable.	-		$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$	B) 6 B) csc ^{−1} (x + 5) + C	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$	D) x6 D) sec ⁻¹ (x + 5) + C	400)401)
$\begin{array}{c} 392) \\ & & & \\ & $	B) Yes uplify the results. C) -10x variable.	D) -20x D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$	393)	$399) \int \frac{dt}{5(tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-In x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x + 5)\sqrt{x^2 + 10x + 24}}$ A) $\frac{\sec^{-1}(x + 5)}{5} + C$ Find the limit. 402) Im sin ⁻¹ x	B) 6	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$	D) x ⁶	400)401)
392) 392) $4 - 3\theta$, 3θ , 4θ ,	B) Yes uplify the results. C) -10x variable.	-	393)	$399) \int \frac{dt}{5(\tan^{-1} t)(1 + t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x + 5)\sqrt{x^2 + 10x + 24}}$ A) $\frac{\sec^{-1}(x + 5)}{5} + C$ Find the limit. 402) $\lim_{x \to -1^+} \sin^{-1}x$ A) $\frac{\pi}{2}$ Find the angle.	B) 6 B) csc ^{−1} (x + 5) + C	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$	D) x6 D) sec ⁻¹ (x +5) + C	400) 401) 402)
392) $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	B) Yes uplify the results. C) −10x variable. C) 2√t ln 2	-	393)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$	B) 6 B) csc ^{−1} (x + 5) + C	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1} (x+5)}{5} + C$ C) -1	D) x6 D) sec ⁻¹ (x +5) + C	400)401)
392) $\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} $ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} & \end{array} &	B) Yes uplify the results. C) -10x variable.	-	393) 394)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{x\to -1^+} x \sin^{-1}x$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$	B) 6 B) csc ^{−1} (x + 5) + C	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$	D) x6 D) sec ⁻¹ (x +5) + C	400) _ 400) _ 401) _ 2 402) _
392) $\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} $ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} & \end{array} \\ & \end{array} & \end{array} &	B) Yes uplify the results. C) −10x variable. C) 2√t ln 2	-	393) 394)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$	B) 6 B) csc ^{−1} (x + 5) + C B) 1	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	400)401)
392) $ \begin{array}{c} $	B) Yes uplify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes	-	393) 394) 395)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x^6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{x\to -1^+} \sin^{11}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) sec ⁻¹ $\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi	B) 6 B) csc ^{−1} (x + 5) + C B) 1	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	400) 401) 402) 403)
392) 392) $4 + \frac{1}{10} + \frac{1}{5} + \frac{1}{10} +$	B) Yes uplify the results. C) -10x variable. C) 2√t ln 2 B) Yes C) 9	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$	393) 394) 395) 396)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) $\lim_{x\to -1^+} x \sin^{-1}x$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) $\tan\left(\sec^{-1}\frac{\sqrt{u^2+9}}{u}\right)$	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 ng trigonometric or inv 	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{\chi 6}}$ C) $\frac{\sin^{-1}(\chi + 5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	400)401)
392) $392)$ 4 $392)$ $A) No$ $A) No$ $A) In (cosh 10x - sinh 10x)$ $B) -10$ $A) In (cosh 10x - sinh 10x)$ $B) -10$ $A) In (cosh 10x - sinh 10x)$ $B) -10$ $A) In (cosh 10x - sinh 10x)$ $B) -10$ $B = 10$	B) Yes uplify the results. C) -10x variable. C) 2√t ln 2 B) Yes C) 9 variable.	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x^6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{x\to -1^+} \sin^{11}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) sec ⁻¹ $\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi	B) 6 B) csc ^{−1} (x + 5) + C B) 1	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	400) 401) 402) 403)
392) $\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array}$	B) Yes uplify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes C) 9 variable. B) $\frac{1}{\ln 4} (\cot \theta - \tan \theta - \ln \theta)$	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-1n x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) $\tan\left(\sec^{-1}\sqrt{u^2+9}\right)$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$ Find the derivative of y with respu	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 ng trigonometric or inv B) 3u 	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function C) $\frac{u\sqrt{u^2+9}}{u^2+9}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	2 400) _ 401) _ 402) _ 402) _ 403) _
392) $\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ &$	B) Yes uplify the results. C) -10x variable. C) 2√t ln 2 B) Yes C) 9 variable.	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5}$ + C Find the limit. 402) $\lim_{X\to -1^+} \sin^{-1}x$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) $\tan\left[\sec^{-1}\frac{\sqrt{u^2+9}}{u}\right]$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$ Find the derivative of y with respondence of the second se	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 ng trigonometric or inv B) 3u 	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function () $\frac{u\sqrt{u^2+9}}{u^2+9}$ priate.	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	400) 401) 402) 403)
$\begin{array}{c} 392) \\ \hline \\ 392) \\ \hline \\ 10 \\ 10$	B) Yes uplify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes C) 9 variable. B) $\frac{1}{\ln 4} (\cot \theta - \tan \theta - \ln \theta)$	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396) 397)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-1n x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$ $x\to -1^+$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) $\tan\left(\sec^{-1}\sqrt{u^2+9}\right)$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$ Find the derivative of y with respu	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 ng trigonometric or inv B) 3u 	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^6}}$ C) $\frac{\sin^{-1}(x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function C) $\frac{u\sqrt{u^2+9}}{u^2+9}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	2 400) _ 401) _ 402) _ 402) _ 403) _
392) $\begin{array}{c} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} & \begin{array}{c} & \begin{array}{c} & \end{array} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} & $	B) Yes splify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes C) 9 variable. B) $\frac{1}{\ln 4} (\cot \theta - \tan \theta - \ln \theta) - \ln \theta$ D) $\frac{1}{\ln 4} \left(\frac{e^{\theta}5^{\theta}}{\sin \theta \cos \theta} \right)$ B) $f^{-1}(x) = x^2 - 9, x \ge 0$	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) lim sin ⁻¹ x $x \rightarrow -1^+$ A) $\frac{\pi}{2}$ Find the agle. 403) sec ⁻¹ $\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) tan $\left(\sec^{-1}\sqrt{\frac{u^2+9}{u}}\right)$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$ Find the derivative of y with respon 405) $y = x^4 \ln x - \frac{1}{3}x^3$ A) $4x^3 - x^2$	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 B) 1 B) 3u b) 3u cst to x, t, or θ, as appropriate to the set of the	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1} (x+5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function C) $\frac{u\sqrt{u^{2}+9}}{u^{2}+9}$ priate. B) $x^{4}\ln x - x^{2} + 4x^{3}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	2 400) 401) 402) 403) 404)
392) $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	B) Yes uplify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes C) 9 variable. B) $\frac{1}{\ln 4} (\cot \theta - \tan \theta - \ln 1)$ D) $\frac{1}{\ln 4} \left(\frac{e^{i\theta}5^{i\theta}}{\sin \theta \cos \theta} \right)$	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396) 397)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) $\lim_{x\to -1^+} \sin^{-1}x$ A) $\frac{\pi}{2}$ Find the angle. 403) $\sec^{-1}\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n, \frac{7\pi}{4} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) $\tan\left(\sec^{-1}\sqrt{\frac{2}{2}+9}\right)$ A) $\frac{\sqrt{u^2+3}}{u^2+3}$ Find the derivative of y with respected to the derivative of the d	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 B) 3u b) 3u ct to x, t, or θ, as appropriate to x. 	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1} (x + 5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function C) $\frac{u\sqrt{u^{2}+9}}{u^{2}+9}$ briate. B) $x^{4}\ln x - x^{2} + 4x^{3}$ D) $5x^{3} - x^{2}$	D) x^{6} D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$ ons. D) $\frac{3}{u}$	2 400) _ 401) _ 402) _ 402) _ 403) _
392) $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ \left) \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \bigg{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \end{array} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c}	B) Yes splify the results. C) -10x variable. C) $2\sqrt{t} \ln 2$ B) Yes C) 9 variable. B) $\frac{1}{\ln 4} (\cot \theta - \tan \theta - \ln \theta) - \ln \theta$ D) $\frac{1}{\ln 4} \left(\frac{e^{\theta}5^{\theta}}{\sin \theta \cos \theta} \right)$ B) $f^{-1}(x) = x^2 - 9, x \ge 0$	D) $\frac{\ln 2\sqrt{t}}{2\sqrt{t}}$ D) x^9	393) 394) 395) 396) 397)	$399) \int \frac{dt}{5(\tan^{-1}t)(1+t^2)}$ A) 5 cot ⁻¹ t + C Simplify the expression. 400) e ^{-ln x6} A) $\frac{1}{x^6}$ Evaluate the integral. 401) $\int \frac{dx}{(x+5)\sqrt{x^2+10x+24}}$ A) $\frac{\sec^{-1}(x+5)}{5} + C$ Find the limit. 402) lim sin ⁻¹ x $x \rightarrow -1^+$ A) $\frac{\pi}{2}$ Find the agle. 403) sec ⁻¹ $\sqrt{2}$ A) $\frac{\pi}{4} \pm 2\pi n \sqrt{\frac{7\pi}{4}} \pm 2\pi n$ C) $\frac{\pi}{4}$ Rewrite the following without usi 404) tar $\left[\sec^{-1} \sqrt{\frac{2}{u^2+3}} \right]$ Find the derivative of y with respond 405) $y = x^4 \ln x - \frac{1}{3}x^3$ A) $4x^3 - x^2$ C) $x^3 - x^2 + 4x^3 \ln x$ Find the derivative of y with respond A) functional for the derivative of y with respond A) $4x^3 - x^2$ C) $x^3 - x^2 + 4x^3 \ln x$	 B) 6 B) csc⁻¹ (x + 5) + C B) 1 B) 1 B) 3u b) 3u cst to x, t, or θ, as appropriate to the second se	C) $\ln 5 \tan^{-1} t + C$ C) $\frac{1}{e^{x^{6}}}$ C) $\frac{\sin^{-1} (x + 5)}{5} + C$ C) -1 B) $\frac{3\pi}{4}$ D) $\frac{7\pi}{4}$ erse trigonometric function C) $\frac{u\sqrt{u^{2}+9}}{u^{2}+9}$ briate. B) $x^{4}\ln x - x^{2} + 4x^{3}$ D) $5x^{3} - x^{2}$	D) x^6 D) $\sec^{-1}(x+5) + C$ D) $-\frac{\pi}{2}$	2 400) _ 401) _ 402) _ 402) _ 403) _ 404) _ 405) _

6 1 4 1 W 1 1 1 1									
Solve the initial value problem. 407) $\frac{dy}{dx} = \frac{4}{x\sqrt{x^2 - 1}} + x^2$, x				407)	A value of sinh x or cosh x is given other indicated hyperbolic function 413) $\sinh x = \frac{12}{5}$, $\operatorname{csch} x =$		d the identity cosh ² x – s	$\sinh^2 x = 1$ to find the v	413)
A) $y = 4 \sec^{-1} x + 2x - 2$	5	B) $y = 4 \csc^{-1} x + \frac{x^3}{3} - \frac{x^3}{3}$	1π		A) $\frac{13}{5}$	B) 5/12	C) 169 25	D) $-\frac{5}{12}$	
C) $y = 4 \sec^{-1} x + \frac{x^3}{3}$	- 2π	D) $y = 4 \sin^{-1} x + \frac{x^3}{3}$			Use logarithmic differentiation to f	find the derivative of y	with respect to the indep	endent variable.	
Solve the problem.	2				414) $y = (x + 4) \sin x$ A) $\sin x \ln (x + 4)$		B) $\left(\frac{-\cos x}{x+4}\right)(x+4)\sin x$	n x	414)
408) Find the area bounded l			1 (2)	408)	C) $\cos x \ln (x+4) + \frac{\sin}{x+4}$	x	$\int (x+4) \sin x \cos x 1$	$\ln(x+4) + \frac{\sin x}{2}$	
A) $\frac{2}{9}$ tan ⁻¹ $\left(\frac{1}{3}\right)$	B) $\sin^{-1}\left(\frac{2}{3}\right)$	C) $\frac{1}{9}$ tan ⁻¹ $\left(\frac{2}{3}\right)$	D) $\frac{1}{9} \sin^{-1}\left(\frac{2}{3}\right)$				(x + 4)	
Find the derivative of y with resp	pect to x, t, or θ, as approp	riate.			Find the domain and range of the i 415) $f(x) = \sqrt{x-6}$				415)
409) $y = \ln\left(\frac{e\theta}{2 + e\theta}\right)$	(2)	2 + eft	2	409)	 A) Domain and range: a C) Domain: [0, ∞); range 		B) Domain: [6, ∞); rar D) Domain: [6, ∞); rar		
A) $\frac{2+2e^{\theta}}{2+e^{\theta}}$	B) $\ln \left[\frac{2}{2 + e^{\theta}} \right]$	C) $\frac{2 + e^{\theta}}{e^{\theta}}$	D) $\frac{2}{2 + e^{\theta}}$		Solve the problem. 416) Suppose that the amount	-6 -11	-11 d		(1)
Evaluate the integral. 410) $\int \frac{e^{2\theta}}{1+e^{2\theta}} d\theta$				410)	416) Suppose that the amount year. When, to the neares A) 21 years				416)
A) $\frac{\ln(1+2e^{\theta})}{2}$ + C		B) $ln(1 + e^{2\theta}) + C$			417) In a chemical reaction, the				417)
C) $\frac{\ln(1+e^{2\theta})}{2}$ + C		D) 2 ln $(1 + e^{2\theta}) + C$			to the amount present, su reactant present when t =				
-					nearest tenth of a gram. A) 7.5 g	B) 11.2 g	C) 3.7 g	D) 0.1 g	
$411) \int \frac{\mathrm{dx}}{x(4+8\ln x)}$		1		411)	Find the derivative of y with respe		Ŭ,		
A) $\frac{1}{8} \ln 4 + 8 \ln x +$		B) $\frac{1}{8} \ln 8 + 4 \ln x + \frac{1}{1}$			418) $y = 9^{x}$ A) x ln 9	B) 9 ^x ln 9	C) 9 ^x ln x	D) 9X	418)
C) $\frac{1}{2} \ln 4 + 8 \ln x +$	C	D) $\frac{1}{4}$ ln 4 + 8 ln x + 0	-		TRUE/FALSE. Write 'T' if the state	ment is true and 'F' if th	e statement is false.		
Rewrite the ratio as a ratio of nation $\log_{100} \log_{100} x$	ural logarithms and simp	lify.		(10)	Determine if the statement is true of 419) $6 + \cos x = O(6)$	or false as x→∞.			419)
412) $\frac{\log_{81} x}{\log_{3} x}$	-, 1		-, 1	412)	420) $e^{x} = o(e^{8x})$				420)
A) 33	B) $\frac{1}{3^3}$	C) ln 4	D) $\frac{1}{4}$		421) $\ln x = o(\ln 3x)$				421)
					422) $\ln x = o(\ln(x^2 + 5))$				422)
					423) x = O(3x)				423)
					424) $6x + \ln x = O(x)$				424)
		65					66		
425) $2x^3 + \cos x = O(2x^2)$ 426) $x = O(x + 5)$ 427) $x = o(x + 1)$ 428) $e^{x} + 9x = O(e^{x})$				425) 426) 427) 428)	Answer Key Testname: 155CH.7 1) A 1) CALCIIW 72.4-1 Diff 0 Page Ref 479-487 Objective (7.2) Perform Logarit 2) cos ⁻¹ 2, There is no angle whe 1D: TCALCIIW 77.13-1 Diff 0 Page Ref 520-533 Objective (7.7) -Know Concepts 3) Let y = xln ax - x + C and take 1D: TCALCIIW 7.3.8-1 Diff 0 Page Ref 489-496 Objective (7.3) -Know Concepts 4) The binary search. The seque steps. 1D: TCALCIIW 7.6.3-4 Diff 0 Page Ref 514-518 Objective (7.7) -Know Concepts 5) Yes, They both have domains opposites the derivatives will 1D: TCALCIIW 7.6.3-4 Diff 0 Page Ref 514-518 Objective (7.7) -Know Concepts 6) When x is positive these grapi cos $\theta = \frac{x}{\sqrt{x^2 + 1}} \leftrightarrow \tan \theta = \frac{1}{x}$. inverse cosine gives values be 1D: TCALCIIW 7.6.3-4 Diff 0 Page Ref: 520-533 Objective (7.7) -Know Concepts 7) f = O(g) but g \neq O(f) except in 1D: TCALCIIW 7.6.3-4 Diff 0 Page Ref: 514-518 Objective (7.6) -Know Concepts 8) When plugging in angles sud $y = \sin^{-1} x is -\frac{\pi}{2} \le y \le \frac{\pi}{2}$. The Instead of getting back the san value. The overall result is a 1D: TCALCIIW 7.7.13-5 Diff 0 Page Ref: 520-533 Objective (7.6) -Know Concepts 8) When plugging in angles sud	see cosine is 2. Enverse Trig Functions E the territy of territy of the territy of te	n p to a million steps. The e same basic shape with o they are both giving the si h functions are still referri nverse tangent gives valu grees are equal. put is the same angle. Ho n angles outside of that ir back the first or fourth q	binary search would tak pposite slopes. Since th ame angle. ing to the same angle. F ues between $-\pi/2$ and 0. owever, the range of nterval the output will b uadrant angle whose sin	e slopes are However, e different.

Answer Key Testname: 155CH.7 9) $f''(x) = -3e^x$. This is always negative so f(x) is always concave down. ID: TCALC11W 7.3.8-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) •Know Concepts: The Exponential Function 10) They are equal whenever $\log_a b$ is defined and $b \neq 1$. $\log_a b = (\ln b)/(\ln a)$. $1/\log_a b = 1/((\ln a)/(\ln b)) = (\ln b)/(\ln a)$. ID: TCALC11W 7.4.8-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Know Concepts: Exponents and Logs 11) $\sec^{-1}(-x) = \cos^{-1}(-1/x) = \pi - \cos^{-1}(1/x) = \pi - \sec^{-1} x$ $\begin{array}{l} \sec^{-1}(-x)=\cos^{-1}(-x)-x & \mbox{ or } x \\ Dir (TCALC11W 7.7.13-3) \\ Diff: 0 \qquad \mbox{Page Ref: 520-533} \\ Objective: (7.7) *Know Concepts: Inverse Trig Functions \end{array}$ 12) $\frac{\ln 10}{\ln 4} \log_{10} x = \frac{\ln 10}{\ln 4} \cdot \frac{\ln x}{\ln 10} = \frac{\ln x}{\ln 4} = \log_4 x$ ID: TCALC11W 7.4.8-2 Diff: 0 Page Ref: 498-503 Objective: (7.4) Know Concepts: Exponents and Logs 13) $\lim_{X \to \infty} \frac{\ln(x+1)}{\ln x} = \lim_{X \to \infty} \frac{1/(x+1)}{1/x} = \lim_{X \to \infty} \frac{x}{x+1} = 1$ $\lim_{x \to \infty} \frac{\ln(x+9975)}{\ln x} = \lim_{x \to \infty} \frac{1/(x+9975)}{1/x} = \lim_{x \to \infty} \frac{x}{x+9975} = 1$ $\chi \rightarrow \infty$ $\chi \rightarrow$ 14) $f'(x) = e^{x}(2(x-4) + (x-4)^2)$. f'(x) = 0 at x = 2 and at x = 4. This is when the local min and local max of f(x) occur. Initially the function is increasing and $\frac{1}{2}(x)$ is positive. It becomes negative at the same point that f(x) begins decreasing. It again becomes positive at the same point that f(x) begins increasing again. ID: TCALC11W 7.3.8-2 Diff: 0 Page Ref: 489–496 Objective: (7.3) *Know Concepts: The Exponential Function 15) csc⁻¹ $\frac{1}{8}$, There is no angle whose cosecant is $\frac{1}{8}$. ID: TCALC11W 7.7.13-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) •Know Concepts: Inverse Trig Functions

69

Answer Key Testname: 155CH.7

- 26) A ID: TCALC11W 7.6.1-1 Diff: 0 Page Ref: 514-518 Objective: (7.6) Compare Growth Rates
- 27) A ID: TCALC11W 7.7.11-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem
- 28) C ID: TCALC11W 7.1.2-7 Diff: 0 Page Ref: 469–475 Objective: (7.1) Graph Inverse of Function from Graph of Function
- 29) D ID: TCALC11W 7.7.7-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square
- 30) A ID: TCALCI1W 7.3.4-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp
- 31) D ID: TCALC11W 7.3.5-9 Diff: 0 Page Ref: 489–496 Objective: (7.3) Evaluate Integral of Natural Exponential Func
- 32) D ID: TCALC11W 7.7.5-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function
- 33) A ID: TCALC11W 7.8.3-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Hyperbolic Function
- 34) B ID: TCALC11W 7.3.6-6 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem
- 35) A ID: TCALC11W 7.8.5-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula
- 36) C ID: TCALC11W 7.7.6-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I

Answer Key Testname: 155CH.7

- 16) $\lim_{X \to \infty} \frac{\sqrt{x^6 + x}}{x^3} = \lim_{X \to \infty} \frac{\sqrt{x^6 + x}}{\sqrt{x^6}} = \lim_{X \to \infty} \sqrt{1 + \frac{1}{x^5}} = 1$ $\lim_{X \to \infty} \frac{\sqrt{x^6 + x^4}}{x^3} = \lim_{X \to \infty} \frac{\sqrt{x^6 + x^4}}{\sqrt{x^6}} = \lim_{X \to \infty} \sqrt{1 + \frac{1}{x^2}} = 1$ Therefore both functions grow at the same rate as $x \to \infty$. ID: TCALC11W 7.6.3-3 Diff: 0 Page Ref: 514-518
- Objective: (7.6) -Know Concepts: Relative Rates of Growth
 D
 ID: TCALC11W 7.3.7-5
 Diff: 0 Page Ref: 489–496
 Objective: (7.3) Solve Apps: The Exponential Function
- 18) C ID: TCALC11W 7.3.6-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem
- 19) C ID: TCALC11W 7.3.3-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential
- 20) A ID: TCALC11W 7.8.5-8 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula
- 21) D ID: TCALC11W 7.8.1-10 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function
- 22) C ID: TCALC11W 7.7.4-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function
- 23) B ID: TCALC11W 7.7.9-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function II
- 24) B ID: TCALC11W 7.8.7-10 Diff: 0 Page Ref: 338-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
- 25) C ID: TCALC11W 7.4.5-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation

70

Answer Key Testname: 155CH.7

- B ID: TCALC11W 7.1.1-9 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N)
- 38) A D: TCALC11W 7.7.8-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II
- 39) A ID: TCALCI1W 7.1.2-4 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function
- 40) B ID: TCALC11W 7.8.10-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Solve Apps: Hyperbolic Functions
- 411 C D: TCALC11W 7.4.5-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation
- 42) B ID: TCALC11W 7.8.4-1 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function
- 43) A ID: TCALC11W 7.8.5-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula
- 44) B ID: TCALCHW 7.8.8-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log
- 45) B ID: TCALC11W 7.7.10-9 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula
- 46) D ID: TCALC11W 7.8.1-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function
- 47) A ID: TCALC11W 7.8.10-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Solve Apps: Hyperbolic Functions

Answer Key Answer Key Testname: 155CH.7 Testname: 155CH.7 48) A ID: TCALC11W 7.3.5-2 ID: TCALC11W 7.3.5-2 Diff. 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func 49) A ID: TCALC11W 7.7.11-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 50) D ID: TCALC11W 7.8.6-6 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 51) B ID: TCALC11W 7.8.10-6 Diff: 0 Page Ref: 538-545 Objective: (7.8) Solve Apps: Hyperbolic Functions 52) D ID: TCALC11W 7.8.8-8 63) D ID: TCALC11W 7.2.5-10 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log 53) A ID: TCALC11W 7.7.6-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I 54) C ID: TCALC11W 7.3.6-5 Diff: 0 Page Ref: 489–496 Objective: (7.3) Solve Initial Value Problem 55) B ID: TCALC11W 7.8.8-1 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log 56) B ID: TCALC11W 7.3.1-5 Diff: 0 Page Ref: 489–496 Objective: (7.3) Find Value of Exp/Log Expression 57) C ID: TCALC11W 7.3.7-2 Diff: 0 Page Ref: 489–496 Objective: (7.3) Solve Apps: The Exponential Function 58) C ID: TCALC11W 7.8.1-9 69) C ID: TCALC11W 7.7.9-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function 73 Answer Key Testname: 155CH.7 Answer Key Testname: 155CH.7 81) A ID: TCALC11W 7.1.3-8 70) D ID: TCALC11W 7.8.6-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 71) B ID: TCALC11W 7.4.5-3 82) B ID: TCALC11W 7.3.5-1 Diff: 0 Page Ref: 498–503 Objective: (7.4) Perform Logarithmic Differentiation 72) D ID: TCALC11W 7.7.2-3 Diff: 0 Page Ref: 520–533 Objective: (7.7) Evaluate Inverse Expressions 73) B ID: TCALC11W 7.4.1-8 Diff: 0 Page Ref: 498–503 Objective: (7.4) Evaluate Logarithmic Expression 74) B ID: TCALCIIW 7.8.2-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions 75) D ID: TCALC11W 7.7.5-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function 76) A ID: TCALC11W 7.7.7-3 Diff: 0 Page Ref: 520–533 Objective: (7.7) Evaluate Integral: Completing the Square 77) C ID: TCALC11W 7.4.7-2 Diff: 0 Page Ref: 498-503 Objective: (7.4) Solve Apps: Exponents and Logs 78) D ID: TCALC11W 7.6.1-4 Diff: 0 Page Ref: 514-518 Objective: (7.6) Compare Growth Rates 79) A ID: TCALCI1W 7.8.6-10 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 80) D ID: TCALC11W 7.2.4-5

Diff: 0 Page Ref: 479–487 Objective: (7.2) Perform Logarithmic Differentiation

- 59) B ID: TCALC11W 7.8.5–6 Diff: 0 Page Ref: 538–545 Objective: (7.8) Check Integration Formula
- 60) B ID: TCALC11W 7.7.10-8 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula
- 61) A ID: TCALC11W 7.7.4-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function
- 62) B ID: TCALC11W 7.7.6-9 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I
- Diff: 0 Page Ref: 479-487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs
- 64) C ID: TCALC11W 7.8.1-8 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function
- 65) A ID: TCALC11W 7.7.4-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function
- 66) A ID: TCALC11W 7.7.3-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u
- 67) C ID: TCALC11W 7.7.7-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square
- 68) D ID: TCALC11W 7.3.6-2 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem
- Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function II

- Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation
- Diff: 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func
- 83) A ID: TCALC11W 7.7.8-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II
- 84) B ID: TCALC11W 7.4.2-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Rewrite Expression as a Ratio of Natural Logs
- 85) C ID: TCALC11W 7.1.6-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Formula for Derivative of Inverse
- 86) A ID: TCALC11W 7.8.1-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function
- 87) A ID: TCALC11W 7.7.8-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II
- 88) A ID: TCALC11W 7.5.1-1 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay
- 89) C ID: TCALC11W 7.7.11-8 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem
- 90) C ID: TCALCI1W 7.4.4-6 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential
- 91) B ID: TCALC11W 7.2.4-9 Diff: 0 Page Ref: 479–487 Objective: (7.2) Perform Logarithmic Differentiation

Answer Key Testname: 155CH.7 92) D ID: TCALCI1W 7.8.2-10 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions 93) C ID: TCALC11W 7.4.1-2 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Logarithmic Expression 94) D ID: TCALC11W 7.2.2-4 Diff: 0 Page Ref: 479-487 Objective: (7.2) Find Derivative of Natural Logarithm 95) A ID: TCALC11W 7.8.4-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 96) B ID: TCALC11W 7.1.2-1 Diff: 0 Page Ref: 469–475 Objective: (7.1) Graph Inverse of Function from Graph of Function 97) C ID: TCALC11W 7.1.5-4 Diff: 0 Page Ref: 469–475 Objective: (7.1) Find the Value of Derivative of Inverse 98) B ID: TCALC11W 7.8.5-10 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 99) B ID: TCALC11W 7.2.5-2 Diff: 0 Page Ref: 479-487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 100) D ID: TCALC11W 7.2.4-10 Diff: 0 Page Ref: 479-487 Objective: (7.2) Perform Logarithmic Differentiation 101) A ID: TCALC11W 7.4.4-5 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 102) D ID: TCALC11W 7.8.4-7 Diff: 0 Page Ref: 538–545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 77 Answer Key Testname: 155CH.7

114) C ID: TCALC11W 7.4.2-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Rewrite Expression as a Ratio of Natural Logs 115) B ID: TCALC11W 7.7.3-5

- Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 116) A ID: TCALC11W 7.8.7-2 ID: TCALCTIW 7.6.7-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
- 117) B ID: TCALC11W 7.7.10-1
- Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula
- 118) A ID: TCALC11W 7.7.8-8 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II
- 119) C ID: TCALCI1W 7.4.3-2 Diff: 0 Page Ref: 498-503 Objective: (7.4) Solve Exponential/Logarithmic Equation
- 120) B ID: TCALC11W 7.8.5-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula
- 121) C ID: TCALC11W 7.4.6-6 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 122) B ID: TCALC11W 7.2.1-1 Diff: 0 Page Ref: 479-487 Objective: (7.2) Express as a Single Logarithm
- 123) B ID: TCALC11W 7.1.6-4 Diff: 0 Page Ref. 469-475 Objective: (7.1) Find Formula for Derivative of Inverse
- 124) B ID: TCALC11W 7.2.1-5 Diff: 0 Page Ref: 479-487 Objective: (7.2) Express as a Single Logarithm

Answer Key Testname: 155CH.7

- 103) B ID:TCALC11W 7.7.10-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula
- 104) A ID: TCALCHW 7.4.1-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Logarithmic Expression
- 105) D ID: TCALC11W 7.4.3-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Solve Exponential/Logarithmic Equation
- 106) D ID: TCALC11W 7.2.4-6 Diff: 0 Page Ref: 479-487 Objective: (7.2) Perform Logarithmic Differentiation
- 107) B ID: TCALC11W 7.3.2-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable
- 108) C ID: TCALC11W 7.5.1-6 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay
- 109) C ID: TCALC11W 7.5.1-10
 Diff: 0
 Page Ref: 505-511

 Objective: (7.5) Solve Apps: Exponential Growth and Decay
- 110) B ID: TCALCHW 7.8.9-2 Dfff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Integral in Terms of Natural Log
- 111) C ID: TCALCHW 7.3.7-7 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function
- 112) B ID: TCALC11W 7.4.6-5 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 113) B ID: TCALC11W 7.8.5-5 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula

78

Answer Key Testname: 155CH.7

- 125) B ID: TCALC11W 7.8.8-4 Diff. 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log
- 126) C ID: TCALC11W 7.8.3-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Hyperbolic Function
- 127) C ID: TCALC11W 7.2.2-7 Diff: 0 Page Ref: 479-487 Objective: (7.2) Find Derivative of Natural Logarithm
- 128) B ID: TCALC11W 7.3.2-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable
- 129) B ID: TCALCI1W 74.5-9 Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation
- 130) B ID: TCALC11W 7.4.4-7 Diff. 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential
- 131) B ID: TCALC11W 7.8.9-7 Diff: 0 Page Ref: 538–545 Objective: (7.8) Evaluate Integral in Terms of Natural Log
- 132) C ID: TCALC11W 7.8.3–4 Diff. 0 Page Ref: 538–545 Objective: (7.8) Find Derivative of Hyperbolic Function
- 133) C ID: TCALC11W 7.5.1-7 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay
- 134) C ID: TCALC11W 77.12-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions
- 135) C ID: TCALC11W 7.4.5-7 Diff: 0 Page Ref: 498–503 Objective: (7.4) Perform Logarithmic Differentiation

Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
136) D	147) D
ID: TCALC11W 7.1.5-2	ID: TCALC11W 7.2.4-7
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 479-487
Objective: (7.1) Find the Value of Derivative of Inverse 137 D ID: TCALC11W 7.1.3-9 Diff: 0 Page Ref: 469-475 Objective: (7.1) Page Ref: 469-475	Objective: (7.2) Perform Logarithmic Differentiation 148) A ID: TCALC11W 7.7.5-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function
Objective: (7.1) Determine Inverse from Equation 138) C ID: TCALC11W 7.7.8-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II	149) C ID: TCALC11W 7.8.10-2 Diff: 0 Page Ref: 538-545 Objective: (7.9. Solve Apps: Hyperbolic Functions
 Separate (a) France in gene substitution if B B. TCALC11W 7.8.10-1 Diff: 0 Page Ref: 538-545 Objective: (7.8) Solve Apps: Hyperbolic Functions 	150) D ID: TCALCI W 7.8-9-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Integral in Terms of Natural Log
 140) B	 151) B
BD: TCALC11W 7.1.1-6	ID: TCALC11W 7.8.7-4
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 538-545
Objective: (7.1) Determine If Function is One-to-One (Y/N)	Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
141) D	152) B
D. TCALCI1W 7.3.2-7	ID: TCALCI1W 7.2.4-8
Diff: 0 Page Ref: 489-496	Diff: 0 Page Ref: 479-487
Objective: (7.3) Solve Exp/Log Equation for Variable	Objective: (7.2) Perform Logarithmic Differentiation
142) B	153) B
ID.TCALC11W 7.3.2-9	ID: TCALCI1W 7.7.5-6
Diff: 0 Page Ref: 489-496	Diff: 0 Page Ref: 520-533
Objective: (7.3) Solve Exp/Log Equation for Variable	Objective: (7.7) Find Derivative: Inverse Trig Function
143) C	154) A
ID.TCALCIIW 7.2.1-2	ID: TCALC11W 7.1.7-3
Diff: 0 Page f: 479-487	Diff: 0 Page Ref: 469-475
Objective: (7.2) Express as a Single Logarithm	Objective: (7.1) Know Concepts Inverse Functions and Their Derivatives
144) C	155) D
ID.TCALC11W 7.7.12-5	ID: TCALCI1W 7.4.6-3
Diff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 498-503
Objective: (7.7) Solve Apps: Inverse Trigonometric Functions	Objective: (7.4) Evaluate Integral of General Exponential Func
145) A	156) A
ID.TCALCIW77.1-6	ID: TCALCIIW 7.7.10-10
Diff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 520-533
Objective: (7.7) Find Value of Inverse Trigonometric Function	Objective: (7.7) Check Integration Formula
146) D	157) D
ID: TCALCIIW 7.1.4-2	ID: TCALCHW 7.8.4-10
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 538-545
Objective: (7.1) Find Domain and Range of Inverse	Objective: (7.8) Find Derivative of Inverse Hyperbolic Function
81	82
Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
 158) C ID.TCALCIW 7.12-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 	169) B ID: TCALCIIW 7.4.3-3 Diff: 0 Page Ref: 498-503 Objective: (7.4) Solve Exponential/Logarithmic Equation
159) D	170) B
ID: TCALC11W 7.8.6-8	ID: TCALC11W 7.4.5-8
Diff: 0 Page Ref: 538-545	Diff: 0 Page Ref: 498-503
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)	Objective: (7.4) Perform Logarithmic Differentiation
Objective. (7.6) Evaluate indefinite integral (13) periodic l'uncholi)	objective. ().1) renorm Eogantiance Differentiation
160) A Difference 167) A Difference 168) A Difference 169) A Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)	171) A ID: TCALCI W 7.3.2-4 Diff 0 Page Ref. 489-996 Objective: (7.3) Solve Exp/Log Equation for Variable
160) A	171) A
ID: TCALC11W 7.8.7-6	ID: TCALC11W 7.3.2-4
Diff: 0 Page Ref: 538-545	Diff: 0 Page Ref: 489-496
 160) A	 171) A
ID: TCALCI W 7.8.7-6	ID: TCALC11W 7.3.2-4
Diff. 0 Page Ref: 538-545	Diff 0 Page Ref: 489-496
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 161) B	Objective: (7.3) Solve Exp/Log Equation for Variable 172) B
ID: TCALCI W 7.7.5-2	ID: TCALC11W 7.3.1-3
Diff. 0 Page Ref: 520-533	Diff: 0 Page Ref: 489-496
 160) A	 171) A
ID: TCALC11W 7.8.7-6	ID: TCALC11W 7.3.2-4
Diff: 0 Page Ref: 538-545	Diff: 0 Page Ref: 489-496
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 161) B	Objective: (7.3) Solve Exp/Log Equation for Variable 172) B
ID: TCALC11W 7.7.5-2	ID: TCALC11W 7.3.1-3
Diff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 489-496
Objective: (7.7) Find Derivative: Inverse Trig Function 162) C	Objective: (7.3) Find Value of Exp/Log Expression 173) A
ID: TCALC11W 7.1.4-7	ID: TCALC11W 7.8.6-5
Diff: 0 Page Ref: 4:09-475	Diff: 0 Page Ref: 538-545
 160) A	 171) A
ID: TCALCIIW 7.8.7-6	ID: TCALC11W 7.3.2-4
Diff: 0 Page Ref: 538-545	Diff: 0 Page Ref: 489-496
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 161) B	Objective: (7.3) Solve Exp/Log Equation for Variable 172) B
ID: TCALCIIW 7.7.5-2	ID: TCALC11W 7.3.1-3
Diff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 489-496
Objective: (7.7) Find Derivative: Inverse Trig Function 162) C	Objective: (7.3) Find Value of Exp/Log Expression 173) A
ID: TCALCIIW 7.1.4-7	ID: TCALC11W 7.8.6-5
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 358-445
Objective: (7.1) Find Domain and Range of Inverse 163) B	Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 174) D
ID: TCALCIIW 7.2.6-6	ID: TCALC11W 7.3.6-1
Diff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 489-496
Objective: (7.2) Evaluate Integral: Substitution I 164) D	Objective: (7.3) Solve Initial Value Problem 175) A
ID: TCALCIIW 7.1.4-3	ID: TCALC11W 7.8.3-1
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 358-545
Objective: (7.1) Find Domain and Range of Inverse	Objective: (7.8) Find Derivative of Hyperbolic Function
 160) A ID: TCALCTIW 7.8.7-6 Diff: 0 Page Ref: 538-545 Objective: (7.3) Evaluate Indefinite Integral (Hyperbolic Function) 161) B ID: TCALCTIW 7.7.5-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function 162) C ID: TCALCTIW 7.1.4-7 Diff: 0 Page Ref: 469-475 Objective: (7.7) Evaluate Integral: Substitution 1 D: TCALCTIW 7.7.6-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution 1 D: TCALCTIW 7.1.4-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 163) B ID: TCALCTIW 7.1.4-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 165) B ID: TCALCTIW 7.7.8-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II 	 171) A ID: TCALC11W 7.3.2-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable 172) B ID: TCALC1W 7.3.1-3 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 173) A ID: TCALC1W 7.8.6-5 Diff 0 Page Ref: 338-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 174) D ID: TCALC1W 7.3.6-1 Diff 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 175) A ID: TCALC1W 7.8.3-1 Diff 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Hyperbolic Function 176) D ID: TCALC1W 7.2.4-4 Diff 0 Page Ref: 79-487 Objective: (7.2) Perform Logarithmic Differentiation
 160) A ID: TCALCI IW 7.8.7-6 Diff: 0 Page Ref: 538-545 Objective: (7.3) Evaluate Indefinite Integral (Hyperbolic Function) 161) B ID: TCALCI W 7.7.5-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function 162) C ID: TCALCI W 7.1.4-7 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 163) B ID: TCALCI W 7.7.6-6 Diff: 0 Page Ref: 520-533 Objective: (7.2) Evaluate Integral: Substitution I 164) D ID: TCALCI W 7.1.4-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 163) B ID: TCALCI W 7.1.4-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 164) D ID: TCALCI W 7.1.4-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse 165) B ID: TCALCI W 7.1.4-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Evaluate Integral: Substitution II 166) A ID: TCALCI W 7.1.1-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (V/N) 	 171) A ID: TCALC11W 7.3.2-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable 172) B ID: TCALC11W 7.3.1-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 173 A ID: TCALC11W 7.8.6-5 Diff: 0 Page Ref: 358-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 174 D ID: TCALC11W 7.3.6-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 175 A ID: TCALC11W 7.8.3-1 Diff: 0 Page Ref: 438-545 Objective: (7.8) Find Derivative of Hyperbolic Function 176 D ID: TCALC11W 7.2.4-4 Diff: 0 Page Ref: 479-487 Objective: (7.2) Perform Logarithmic Differentiation 177 D ID: TCALC11W 7.7.5-1 Diff: 0 Page Ref: 420-433 Objective: (7.7) Find Derivative: Inverse Trig Function
 160 A	 171) A
ID: TCALCHW 7.8.7-6	ID: TCALC11W 7.3.2-4
Dif: 0 Page Ref: 338-545	Diff: 0 Page Ref: 489-496
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 161 B	Objective: (7.3) Solve Exp/Log Equation for Variable 172) B
ID: TCALCHW 7.7.5-2	ID: TCALC11W 7.3.1-3
Dif: 0 Page Ref: 320-533	Diff: 0 Page Ref: 489-496
Objective: (7.7) Find Derivative: Inverse Trig Function 162 C	Objective: (7.3) Find Value of Exp/Log Expression 173) A
ID: TCALCHW 7.1.4-7	ID: TCALC11W 7.8.6-5
Dif: 0 Page Ref: 496-475	Diff: 0 Page Ref: 353-545
Objective: (7.1) Find Domain and Range of Inverse 163 B	Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 174) D
ID: TCALCHW 7.7.6-6	ID: TCALC11W 7.8.6-1
Dif: 0 Page Ref: 496-475	Diff: 0 Page Ref: 489-496
Objective: (7.7) Evaluate Integral: Substitution I 164 D	Objective: (7.8) Solve Initial Value Problem 175) A
ID: TCALCHW 7.1.4-3	ID: TCALC11W 7.8.3-1
Dif: 0 Page Ref: 496-475	Diff: 0 Page Ref: 435-545
Objective: (7.1) Find Domain and Range of Inverse 165 B	Objective: (7.8) Find Derivative of Hyperbolic Function 175) D
ID: TCALCHW 7.7.8-5	D: TCALC11W 7.2.4-4
Dif: 0 Page Ref: 406-475	Diff: 0 Page Ref: 479-487
Objective: (7.7) Evaluate Integral: Substitution II 166 A	Objective: (7.2) Perform Logarithmic Differentiation 177) D
ID: TCALCHW 7.1.4-2	ID: TCALC11W 7.7.5-1
Dif: 0 Page Ref: 406-475	Diff: 0 Page Ref: 520-533

Answer Key Answer Key Testname: 155CH.7 180) C ID: TCALCHW 7.4.6-8 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func 181) C ID: TCALC11W 7.7.3-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 182) A ID: TCALC11W 7.8.6-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 183) B ID: TCALC11W 7.8.5-1 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 184) B ID: TCALC11W 7.8.4-6 Diff: 0 Page Ref: 538–545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 185) C ID: TCALC11W 7.1.2-5 Dfff: 0 Page Ref: 469–475 Objective: (7.1) Graph Inverse of Function from Graph of Function 186) B ID: TCALC11W 7.7.6-7 ID: TCALCTIW 7.7.6-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I 187) A ID: TCALC11W 7.1.1-7 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 188) A ID: TCALC11W 7.6.1-3 Diff: 0 Page Ref: 514-518 Objective: (7.6) Compare Growth Rates 189) C ID: TCALC11W 7.3.3-6 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential 190) A ID: TCALC11W 7.3.4-7 201) B ID: TCALC11W 7.4.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp 85 Answer Key Testname: 155CH.7 Answer Key 202) C ID: TCALC11W 7.2.3-1 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 203) B ID: TCALC11W 7.8.5-4 214) C ID: TCALC11W 7.1.7-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 204) D ID: TCALC11W 7.7.12-4 215) D ID: TCALC11W 7.7.6-8 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions 205) C ID: TCALC11W 7.4.3-4 Diff: 0 Page Ref: 498–503 Objective: (7.4) Solve Exponential/Logarithmic Equation 206) B ID: TCALC11W 7.1.1-5 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 207) D ID: TCALC11W 7.3.7-4 Diff: 0 Page Ref: 489–496 Objective: (7.3) Solve Apps: The Exponential Function 208) A ID: TCALC11W 7.3.5-5 ID: TCALC11W 7.3.5-5 Diff: 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func 209) A ID: TCALC11W 7.8.9-8 Diff: 0 Page Ref: 538–545 Objective: (7.8) Evaluate Integral in Terms of Natural Log 210) B ID: TCALC11W 7.7.7-4 Diff: 0 Page Ref: 520–533 Objective: (7.7) Evaluate Integral: Completing the Square 211) B ID: TCALC11W 7.3.7-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function

212) B ID: TCALC11W 7.1.1-10
 Diff: 0
 Page Ref: 469-475

 Objective: (7.1) Determine If Function is One-to-One (Y/N)

87

Testname: 155CH.7

- 191) B ID: TCALCHW 7.1.1-8 Diff: 0 Page Ref: 469–475 Objective: (7.1) Determine If Function is One-to-One (Y/N)
- 192) B ID: TCALC11W 7.3.2-5 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable
- 193) B ID: TCALC11W 7.8.9-4 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Integral in Terms of Natural Log
- 194) C ID: TCALC11W 7.7.5–4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function
- 195) C ID: TCALC11W 7.7.4-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function
- 196) D ID: TCALCI1W 7.4.6-7 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 197) B ID: TCALC11W 7.3.3-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential
- 198) B ID: TCALCHW 7.3.3-2 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential
- 199) A ID: TCALCHIW 7.7.7-8 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square
- 200) D ID: TCALC11W 7.1.4-5 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Domain and Range of Inverse
- Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Logarithmic Expression

86

Testname: 155CH.7

- 213) C ID: TCALC11W 7.4.1-3 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Logarithmic Expression
- Diff: 0 Page Ref: 469-475 Objective: (7.1) Know Concepts: Inverse Functions and Their Derivatives
- Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I
- 216) B ID: TCALC11W 7.7.6-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I
- 217)
 C

 ID: TCALC11W 7.2.5-3
 Diff: 0
 Page Ref: 479-487

 Objective: (7.2)
 Solve Apps: Differentiation / Integration Involving Natural Logs
- 218) D ID: TCALC11W 7.7.1-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Value of Inverse Trigonometric Function
- 219) D ID: TCALC11W 7.8.7-5 ID: TCALC11W 7.8.7-5 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
- 220) A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func
- 221) A ID: TCALC11W 7.3.1-6 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression
- 222) B ID: TCALC11W 7.4.6-2 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 223) A ID: TCALC11W 7.7.11-9 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem

Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
224) C	235) D
DI: TCALCIIW 7.1.5-3	ID: TCALCHW 7.2.4-3
Diff: 0 Page Ref: 469-475	Diff. 0 Page Ref: 479-487
Objective: (7.1) Find the Value of Derivative of Inverse	Objective: (7.2) Perform Logarithmic Differentiation
225) B	236) B
ID: TCALC11W 7.4.1-6	ID: TCALC11W 7.4.4-8
Diff: 0 Page Ref: 498-503	Diff: 0 Page Ref: 498-503
Objective: (7.4) Evaluate Logarithmic Expression	Objective: (7.4) Find Derivative of General Exponential
226) B ID: TCALC11W 7.7.10-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula	237) C ID: TCALC11W 7.8.1-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function
227) B	238) B
ID: TCALC11W 7.1.4-6	ID: TCALC11W 7.2.2-6
Diff: 0 Page Ref: 469-475	Diff: 0 Page Ref: 479-487
Objective: (7.1) Find Domain and Range of Inverse	Objective: (7.2) Find Derivative of Natural Logarithm
228) B	239) A
ID: TCALC11W 7.7.11-7	ID: TCALCHW 7.4.1-7
Dfff: 0 Page Ref: 520-533	Diff: 0 Page Ref: 498-503
Objective: (7.7) Solve Initial Value Problem	Objective: (7.4) Evaluate Logarithmic Expression
229) B ID: TCALCI1W 77.10-5 Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula	240) D ID: TCALC11W 7.8.2-1 Diff: 0 Page Ref: 338-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions
230) A	241) C
ID: TCALCI1W 73.4-4	ID: TCALC11W 7.8.7-3
Diff 0 Page Ref: 489-496	Diff: 0 Page Ref: 538-545
Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp	Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
231) C	242) C
ID: TCALCI1W 7.2.5-7	ID: TCALC11W 7.4.6-9
Diff: 0 Page Ref: 479-487	Diff: 0 Page Ref: 498-503
Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs	Objective: (7.4) Evaluate Integral of General Exponential Func
232) D	243) A
ID: TCALCI1W 7.3.4-6	ID: TCALC11W 7.1.6-3
Diff: 0 Page Ref: 489-496	Diff: 0 Page Ref: 469-475
Objective: (7.3) Find dy / dx Implicitly from Eqn w / Log and Exp	Objective: (7.1) Find Formula for Derivative of Inverse
233) B	244) A
ID: TCALCI1W 7.8.3-5	ID: TCALC11W 7.2.2-3
Diff: 0 Page Ref: 538-545	Diff: 0 Page Ref: 479-487
Objective: (7.8) Find Derivative of Hyperbolic Function	Objective: (7.2) Find Derivative of Natural Logarithm
234) B	245) D
ID: TCALCI1W 73.7-6	ID: TCALC11W 7.3.4-2
Diff: 0 Page Ref: 489-496	Diff: 0 Page Ref: 489-496
Objective: (7.3) Solve Apps: The Exponential Function	Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp
89	90
Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
²⁴⁰ D	257) D
ID: TCALCIIW736-3	ID: TCALC11W 7.3.1-4
Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
240 D	257) D
Answer Key	Answer Key
Testname: 155CH.7	Testname: 155CH.7
10: TCALCI1W 7.3.6-3	DJ: TCALC11W 7.3.1-4
Diff 0 Page Ref. 489-496	Diff: 0 Page Ref: 489-496
Objective: (7.3) Solve Initial Value Problem	Objective: (7.3) Find Value of Exp/Log Expression
247 C	258) D
Answer Key Testname: 155CH.7 246 D D: TCALCHW 7.3.6-3 Diff 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 247 C D: TCALCHW 7.7.3-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248 B	Answer Key Testname: 155CH.7 257) D ID: TCALCHW 7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 258) D ID: TCALCHW 7.2.3-8 Diff: 0 Page Ref: 459-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 259) D ID: TCALCHW 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function
Answer Key Testname: 155CH.7 246 D ID: TCALC11W 7.3.6-3 Diff: 0 Page Ref: 499-496 Objective: (7.3) Solve Initial Value Problem 247 C Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248 B ID: TCALC11W 7.7.11-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALC11W 7.5.1-2 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps Exponential Growth and Decay	Answer Key Testname: 155CH.7 257 D ID: TCALCHW 7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 258 D ID: TCALCHW 7.2.3-8 Diff: 0 Page Ref: 499-497 Objective: (7.2) Evaluate Integral That Yields Natural Log 259 D ID: TCALCHW 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 260 A ID: TCALCHW 7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 261) D
Answer Key Testmame: 155CH.7 246) D D: TCALCIIW 7.3.6-3 Dif: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 247) C Dif: TCALCIIW 7.7.3-1 Dif: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248) B D: TCALCIIW 7.7.11-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C C10: TCALCIIW 7.5.1-2 Diff: 0 Page Ref: 503-511 Objective: (7.5) Solve Initial Growth and Decay 249 C D: TCALCIIW 7.5.1-2 Diff: 0 Page Ref: 503-511 Objective: (7.3) Solve Initial Growth and Decay 250) A D D: TCALCIIW 7.5.4-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 251) C C C1 CTALCIIW 7.3.5-8	Answer Key Testname: 155CH.7 257) D D:TCALCHW7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 258) D D:TCALCHW7.2.3-8 Diff: 0 Page Ref: 469-497 Objective: (7.2) Evaluate Integral That Yields Natural Log 259) D D:TCALCHW7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 260) A D:TCALCHW7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine if Function is One-to-One (Y/N) 261) D D:TCALCHW7.7.7-7 Diff: 0 Page Ref: 202-533 Objective: (7.7) Evaluate Integral: Completing the Square 262) C D:TCALCHW7.8.6-9
 Answer Key Testname: 155CH.7 246 D ID: TCALCIIW 7.3.6-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 247 C Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248 B ID: TCALCIIW 7.7.11-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALCIIW 7.5.1-2 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay 250 A ID: TCALCIIW 7.3.6-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 251 C ID: TCALCIIW 7.3.5-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 252 A ID: TCALCIIW 7.3.6-7 Diff: 0 Page Ref: 489-496 	Answer Key Testname: 155CH.7 257 D ID: TCALCHW 7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 258 D ID: TCALCHW 7.2.3-8 Diff: 0 Page Ref: 499-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 259 D ID: TCALCHW 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 2600 A ID: TCALCHW 7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 2611 D ID: TCALCHW 7.7.7-7 Diff: 0 Page Ref: 320-533 Objective: (7.7) Evaluate Integral: Completing the Square
 Answer Key Testname: 155CH.7 246 D ID: TCALCHW 7.3.6-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 247 C ID: TCALCHW 7.7.3-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248 B ID: TCALCHW 7.7.1-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALCHW 7.5.1-2 Diff: 0 Page Ref: 520-531 Objective: (7.3) Solve Initial Value Problem 249 C ID: TCALCHW 7.5.1-2 Diff: 0 Page Ref: 490-496 Objective: (7.3) Solve Initial Value Problem 250 A ID: TCALCHW 7.3.5-8 Diff: 0 Page Ref: 490-496 Objective: (7.3) Solve Initial Value Problem 251 C ID: TCALCHW 7.3.5-8 Diff: 0 Page Ref: 490-496 Objective: (7.3) Solve Initial Value Problem 252 A ID: TCALCHW 7.3.5-7 Diff: 0 Page Ref: 490-496 Objective: (7.3) Solve Initial Value Problem 253 D ID: TCALCHW 7.2.2-1 Diff: 0 Page Ref: 490-486 Objective: (7.3) Solve Initial Value Problem 253 D ID: TCALCHW 7.2.2-1 Diff: 0 Page Ref: 490-486 Objective: (7.3) Solve Initial Value Problem 	Answer Key Testname: 155CH.7 257 D ID: TCALC11W 7.3.1-4 Diff: 0 Page Ref: 489-946 Objective: (7.3) Find Value of Exp/Log Expression 258 D ID: TCALC11W 7.2.3-8 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate integral That Yields Natural Log 259 D ID: TCALC11W 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 260 A ID: TCALC11W 7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 261 D ID: TCALC11W 7.7.7-7 Diff: 0 Page Ref: 520-533 Objective: (7.3) Evaluate Integral: Completing the Square 262 C ID: TCALC11W 7.8.6-9 Diff: 0 Page Ref: 479-487 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 263 A ID: TCALC11W 7.2.5-6 Diff: 0 Page Ref: 479-487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 264 D ID: TCALC11W 7.7.1-3 Diff: 0 Page Ref: 20-533
Answer Key Testname: 155CH.7 246 D ID: TCALC11W 7.3.6-3 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 247 C Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 248 B Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALC11W 7.51-2 Diff: 0 Page Ref: 520-531 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALC11W 7.51-2 Diff: 0 Page Ref: 520-531 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALC11W 7.51-2 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 250 A ID: TCALC11W 7.3.5-8 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 251 C ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 252 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 253 D ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 253 D ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 254 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 254 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 254 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 255 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.2) Solve Initial Value Problem 250 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 250 A ID: TCALC11W 7.3.5-7 Diff: 0 Page Ref: 489-96 Objective: (7.3) Solve Initial Value Problem 250 A ID: TCALC11W 7.3.5-5 Diff: 0 Page Ref: 489-95 Objective: (7.2) Find Derivative of Natural Logarithm 250 B ID: TCALC11W 7.3.5-5 Diff: 0 Page Ref: 38-55 Diff: 0 Page Ref: 38-55 Di	Answer Key Testname: 155CH.7 257) D ID: TCALC11W 7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 258) D ID: TCALC11W 7.2.3-8 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 259) D ID: TCALC11W 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 260) A ID: TCALC11W 7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 261) D ID: TCALC11W 7.7.7-7 Diff: 0 Page Ref: 520-533 Objective: (7.8) Evaluate Integral: Completing the Square 262 C ID: TCALC11W 7.8.6-9 Diff: 0 Page Ref: 538-545 Objective: (7.2) Solve Apps: Differentiation /Integration Involving Natural Logs 263 A ID: TCALC11W 7.7.1-3 Diff: 0 Page Ref: 520-533 Objective: (7.2) Solve Apps: Differentiation /Integration Involving Natural Logs 264 D ID: TCALC11W 7.7.1-3 Diff: 0 Page Ref: 520-533 Objective: (7.2) Field Value of Inverse Trigonometric Function 265 B ID: TCALC11W 7.2.2-2 Diff: 0 Page Ref: 479-487
 Answer Key Testname: 155CH.7 240 D ID: TCALCIIW 7.3.6-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Initial Value Problem 247 C ID: TCALCIIW 7.7.3-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 248 B ID: TCALCIIW 7.7.1-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 249 C ID: TCALCIIW 7.5.1-2 Diff: 0 Page Ref: 505-511 Objective: (7.3) Solve Initial Value Problem 250 A ID: TCALCIIW 7.3.5-8 Diff: 0 Page Ref: 499-496 Objective: (7.3) Solve Initial Value Problem 251 C ID: TCALCIIW 7.3.5-8 Diff: 0 Page Ref: 499-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func: 252 A ID: TCALCIIW 7.3.5-7 Diff: 0 Page Ref: 499-496 Objective: (7.3) Evalue Integral of Natural Exponential Func: 253 D ID: TCALCIIW 7.3.5-7 Diff: 0 Page Ref: 499-496 Objective: (7.3) Evalue Integral of Natural Exponential Func: 254 D ID: TCALCIIW 7.2.5-7 Diff: 0 Page Ref: 499-497 Objective: (7.2) Find Derivative of Natural Logarithm 254 D ID: TCALCIIW 7.3.4-9 	Answer Key Testname: 155CH.7 257 D D:TCALC11W 7.3.1-4 Diff: 0 Page Ref: 489-496 Objective: 7.3) Find Value of Exp/Log Expression 258 D D:TCALC11W 7.2.3-8 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 259 D D:TCALC11W 7.1.2-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Obtermine If Function from Graph of Function 260 A D:TCALC11W 7.1.1-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 261 D D:TCALC11W 7.7.7-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square 262 C D:TCALC11W 7.8.6-9 Diff: 0 Page Ref: 529-487 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 263 A D:TCALC11W 7.2.5-6 Diff: 0 Page Ref: 520-533 Objective: (7.2) Solve Apps: Differentiation / Integration Involving Natural Logs 264 D D:TCALC11W 7.7.1-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Value of Inverse Trigonometric Function 263 B D:TCALC11W 7.2.2-2

Answer Key Testname: 155CH.7 268) B ID: TCALCIIW 7.7.12-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions 269) A ID: TCALC11W 7.7.6-3 ID: TCALC11W 7.7.0-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I 270) D ID: TCALC11W 7.8.9-6 Diff: 0 Page Ref: 538–545 Objective: (7.8) Evaluate Integral in Terms of Natural Log 271) B ID: TCALC11W 7.8.7-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 272) A ID: TCALC11W 7.1.7-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Know Concepts: Inverse Functions and Their Derivatives 273) C ID: TCALC11W 7.5.1-5 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay 274) D ID: TCALC11W 7.8.4-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 275) D ID: TCALC11W 7.4.4-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 276) D ID: TCALCIIW 7.14-1 Diff: 0 Page Ref: 469–475 Objective: (7.1) Find Domain and Range of Inverse 277) D ID: TCALC11W 7.2.3-9 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 278) C ID: TCALC11W 7.4.5-5 Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation 93 Answer Key Testname: 155CH.7 Answer Key 290) D ID: TCALC11W 7.7.8-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution II 291) A ID: TCALC11W 7.7.9-3 Diff: 0 Page Ref: 520–533 Objective: (7.7) Find Limit: Inverse Trig Function II 292) D ID: TCALC11W 7.8.2-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions 293) A ID: TCALC11W 7.4.7-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Solve Apps: Exponents and Logs 294) B ID: TCALC11W 7.7.10-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula 295) B ID: TCALC11W 7.2.5-4 Diff. 0 Page Ref. 479–487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 296) A ID: TCALC11W 7.8.4-8 ID: TCALC11W 7.8.4-8 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 297) C ID: TCALC11W 7.2.5-8 Diff 0 Page Ref. 479–487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 298) C ID: TCALC11W 7.3.1-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 299) B ID: TCALC11W7.8.2-5 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions

Answer Key Testname: 155CH.7

- 279) B ID: TCALCIIW 77.7-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square
- 280) D ID: TCALC11W 7.1.7-4 Diff: 0 Page Ref: 469-475 Objective: (7.1) Know Concepts: Inverse Functions and Their Derivatives
- 281) B ID: TCALC11W 7.2.2-9 Diff: 0 Page Ref: 479-487 Objective: (7.2) Find Derivative of Natural Logarithm
- 282) D ID: TCALCHW 7.4.6-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 283) A ID: TCALC11W 7.4.7-4 Diff: 0 Page Ref: 498–503 Objective: (7.4) Solve Apps: Exponents and Logs
- 284) B ID: TCALC11W 7.2.3-4 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log Diff: 0
- 285) C ID: TCALC11W 7.7.2-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions
- 286) A ID: TCALC11W 7.3.4-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp
- 287) C ID: TCALC11W 7.4.6-10 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func
- 288) B ID: TCALC11W 7.1.5-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find the Value of Derivative of Inverse
- 289) B ID: TCALC11W 7.8.1-1 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function

300) B ID: TCALC11W 7.5.1-3 Diff: 0 Page Ref: 505-511 Objective: (7.5) Solve Apps: Exponential Growth and Decay

95

Testname: 155CH.7

- 301) A ID: TCALCHW 7.8.10-5 Diff: 0 Page Ref: 538-545 Objective: (7.8) Solve Apps: Hyperbolic Functions
- 302) C ID: TCALC11W 7.8.2-9 Diff. 0 Page Ref. 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions

- 303) A ID: TCALC11W 7.1.6-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Find Formula for Derivative of Inverse
- 304) A ID: TCALC11W 7.3.5-4 Diff: 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func
- 305) D ID: TCALCI1W 7.7.3-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u
- A06)
 A

 ID: TCALCIUW 7.4.4-2

 Diff: 0
 Page Ref: 498-503

 Objective: (7.4) Find Derivative of General Exponential
- 307) B ID: TCALC11W 7.2.3-10 ID: TCALC11W 7/2.3-10 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log
- 308) C ID: TCALC11W 7.7.2-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions
- 309) D ID: TCALC11W 7.1.3-1 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation
- S100
 C

 ID: TCALC11W 7.8.2-4
 Diff: 0
 Page Ref: 538-545

 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions
- Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation

Ans	ver Key	
	name: 155CH.7	
312)	B ID: TCALCHW 7.2.1-4 Diff: 0 Page Ref: 479-487 Objective: (7.2) Express as a Single Logarithm	
313)		
314)		
315)	A ID: TCALC11W 7.2.5-5 Diff: 0 Page Ref: 479-487	
316)	ID: TCALC11W 7.6.1-2 Diff: 0 Page Ref: 514-518	
317)	ID: TCALC11W 7.8.7-9 Diff: 0 Page Ref: 538-545	
318)	Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) B ID: TCALCHIW 7.4.2-2 Diff 0 Page Ref: 498-503	
319)	Objective: (7.4) Rewrite Expression as a Ratio of Natural Logs B	
320)	ID: TCALC11W 7.8.3-7 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Hyperbolic Function B	
	ID: TCALCHW 7.7.3-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u	
321)	C ID: TCALC11W 7.2.5-9 Diff: 0 Page Ref: 479–487 Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs	
322)	C ID: TCALC11W 72.3-7 Diff 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log	
	97	
	wer Key name: 155CH.7	
Test	name: 155CH.7	
Test: 334)	A ID: TCALCI1W 7.4.6-4 Dff 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func	
Test: 334)	A ID: TCALCI1W 7.4.6-4 Dif: 0 Page Ref: 498-503	
Test: 334)	A ID: TCALCHIW 7.4.6-4 Diff 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A ID: TCALCHIW 7.3.2-3 Diff 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable	
Test: 334) 335)	A ID: TCALCHIW 7.4.6-4 ID: TCALCHIW 7.4.6-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A ID: TCALCHIW 7.3.2-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B ID: TCALCHIW 7.3.7-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B ID: TCALCHIW 7.1.3-6 ID: TCALCHIW 7.1.3-6 Diff: 0 Page Ref: 469-475	
Test: 334) 335) 336)	hame: 155 CH.7 A ID: TCALCIIW 7.4.6-4 ID: TCALCIIW 7.4.6-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A D: TCALCIIW 7.3.2-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B ID: TCALCIIW 7.3.7-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B ID: TCALCIIW 7.1.3-6 Diff: 0 Page Ref: 489-495 Objective: (7.1) Determine Inverse from Equation A ID: TCALCIIW 7.3.2-1 Diff: 0 Page Ref: 489-495	
Test: 334) 335) 336) 337) 338)	A ID: TCALCI1W 7.4.6-4 ID: TCALCI1W 7.4.6-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A D: TCALCI1W 7.3.2-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B ID: TCALCI1W 7.3.7-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B ID: TCALCI1W 7.1.3-6 Diff: 0 Page Ref: 489-495 Objective: (7.1) Determine Inverse from Equation A ID: TCALCI1W 7.3.2-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A ID: TCALCI1W 7.3.2-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A ID: TCALCI1W 7.3.0-6 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable	
Test: 334) 335) 336) 337) 338)	hame: 155 CH.7 A ID: TCALCHW 7.4.6-4 ID: TCALCHW 7.4.6-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A D: TCALCHW 7.3.2-3 Diff: 0 Page Ref: 498-496 Objective: (7.3) Solve Exp/Log Equation for Variable B D: TCALCHW 7.3.7-10 Diff: 0 Page Ref: 498-496 Objective: (7.3) Solve Apps: The Exponential Function B D: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 498-496 Objective: (7.3) Solve Exp/Log Equation for Variable A D: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 498-496 Objective: (7.3) Solve Exp/Log Equation for Variable A D: TCALCHW 7.2.2-1 Diff: 0 Page Ref: 498-496 Objective: (7.3) Solve Exp/Log Equation for Variable A D: TCALCHW 7.7.10-6 Diff: 0 Page Ref: 20-533 Objective: (7.7) Check Integration Formula A D: TCALCHW 7.7.4-5 Diff: 0 Page Ref: 20-533 Dipertive: (7.7) Check Integration Formula	
Test 334) 335) 336) 337) 338) 339) 340)	hame: $155CH.7$ A ID: TCALCIIW 7.4.6-4 DIff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A DI: TCALCIIW 7.3.2-3 DIff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B DI: TCALCIIW 7.3.7-10 DIff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B DI: TCALCIIW 7.3.7-6 DIff: 0 Page Ref: 489-496 Objective: (7.1) Determine Inverse from Equation A DI: TCALCIIW 7.3.2-1 DIff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A DI: TCALCIIW 7.3.2-1 DIff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A DI: TCALCIIW 7.3.0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula A DI: TCALCIIW 7.7.4-5 DIff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function A D: TCALCIIW 7.8.2-3 DIff: 0 Page Ref: 538-545	
Test 334) 335) 336) 337) 338) 339) 340)	hame: $155CH.7$ A ID: TCALCHW7.4.6-4 ID: TCALCHW7.4.6-4 ID: TCALCHW7.7.3-0 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B ID: TCALCHW7.1.3-6 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B ID: TCALCHW7.1.3-6 Diff: 0 Page Ref: 489-496 Objective: (7.1) Determine Inverse from Equation A ID: TCALCHW7.3.2-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A ID: TCALCHW7.3.2-1 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable A ID: TCALCHW7.3.2-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula A ID: TCALCHW7.7.4-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula A ID: TCALCHW7.7.4-5 Diff: 0 Page Ref: 520-533 Objective: (7.8) Fund Limit: Inverse Trig Function A ID: TCALCHW7.8.2-3 Diff: 0 Page Ref: 535-55 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions B ID: TCALCHW7.7.4-5	
Test: 334) 335) 336) 337) 338) 338) 339) 340) 341)	hame: $155CH.7$ A ID: TCALCHW 7.4.6-4 ID: TCALCHW 7.4.6-4 ID: TCALCHW 7.3.6-3 Objective: (7.4) Evaluate Integral of General Exponential Funct A ID: TCALCHW 7.3.2-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Exp/Log Equation for Variable B ID: TCALCHW 7.3.7-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function B ID: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 489-495 Objective: (7.1) Determine Inverse from Equation A ID: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 489-495 Objective: (7.3) Solve Exp/Log Equation for Variable A ID: TCALCHW 7.1.9-6 Diff: 0 Page Ref: 489-496 Objective: (7.7) Check Integration Formula A ID: TCALCHW 7.7.4-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function A ID: TCALCHW 7.8-3 Diff: 0 Page Ref: 538-515 Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions B ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D D ID: TCALCHW 7.3.7-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Solve Apps: The Exponential Function D D D D D D D D D D D D D	
Test: 334) 335) 336) 337) 338) 338) 339) 340) 341) 342)	A D: TCALCHW 7.4.6-4 D: TCALCHW 7.3.2-3 Diff: 0 rage Ref: 498-503 Objective: (7.4) Evaluate Integral of General Exponential Func A D: TCALCHW 7.3.2-3 Diff: 0 rage Ref: 498-946 Objective: (7.3) Solve Exp1/Log Equation for Variable B D: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 498-946 Objective: (7.3) Solve Exp1/Log Equation for Variable B D: TCALCHW 7.1.3-6 Diff: 0 Page Ref: 498-946 Objective: (7.3) Solve Exp1/Log Equation for Variable A D: TCALCHW 7.3.2-1 Diff: 0 Page Ref: 498-946 Objective: (7.3) Solve Exp1/Log Equation for Variable A D: TCALCHW 7.7.10-6 Diff: 0 Page Ref: 520-533 Objective: (7.7) Check Integration Formula A D: TCALCHW 7.7.4-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function A D: TCALCHW 7.8.2-3 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Exp1/Log Equation in Terms of Exponential Functions B D: TCALCHW 7.7.3-5 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Exp2/Log Equation in Terms of Exponential Functions B D: TCALCHW 7.7.3-3 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Exp2/Log Equation in Terms of Exponential Functions D D: TCALCHW 7.3.5-3 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Exp2/Log Equation in Terms of Exponential Functions D D: TCALCHW 7.3.5-3 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Exp2/Log Exponential Function D D: TCALCHW 7.3.5-3 Diff: 0 Page Ref: 520-536 Objective: (7.3) Solve Exp2/Log Exponential Function D D: TCALCHW 7.3.5-3 Diff: 0 Page Ref: 520-536 Diff: 0 Page Ref: 52	

323) D ID: TCALC11W 7.1.2-6 Diff: 0 Page Ref: 469-475 Objective: (7.1) Graph Inverse of Function from Graph of Function 324) A ID: TCALC11W 7.7.9-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function II 325) B ID: TCALC11W 7.8.8-6 Diff. 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log 326) C ID: TCALCHW 7.8.7-1 Diff: 0 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 327) C ID: TCALC11W 7.4.4-3

Answer Key Testname: 155CH.7

- Diff: 0 Page Ref: 498–503 Objective: (7.4) Find Derivative of General Exponential 328) D ID: TCALC11W 7.1.3-2 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation
- 329
 B

 ID: TCALCHW 7.8.9-5
 Diff. 0

 Page Ref: 538-545
 Objective: (7.8) Evaluate Integral in Terms of Natural Log
- 330) A ID:TCALCIIW 7.1.4-8 Diff: 0 Page Ref: 469–475 Objective: (7.1) Find Domain and Range of Inverse
- 331) A ID: TCALC11W 7.7.1-7 Diff: 0 Page Ref: 520–533 Objective: (7.7) Find Value of Inverse Trigonometric Function
- 332) C ID.TCALCILW 7.72-7 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions
- 333) B ID: TCALC11W 7.7.10-4
 Diff: 0 Page Ref: 520-533
 Objective: (7.7) Check Integration Formula

Answer Key Testname: 155CH.7

 345
 D

 ID: TCALCHW 7.8.6-1
 Diff: 0
 Page Ref: 538-545

 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
 Page Ref: 538-545

98

- 346) B ID: TCALC11W 7.3.3-7 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential
- 347) D ID: TCALC11W 7.6.1-5 Diff: 0 Page Ref: 514-518 Objective: (7.6) Compare Growth Rates
- 348) C ID: TCALC11W 7.7.6-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Substitution I
- 349) D DI: TCALCHIW 7.2.3-6 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log
- 350) C

 ID: TCALC11W 7.8.8-2

 Diff: 0
 Page Ref: 538-545

 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log
- 351) C ID: TCALC11W 7.4.1-5 Diff: 0 Page Ref: 498-503 Objective: (7.4) Evaluate Logarithmic Expression
- 352) A ID: TCALC11W 7.3.3-9 Diff: 0 Page Ref. 489-496 Objective: (7.3) Find Derivative of Natural Exponential
- 353) D ID: TCALC11W 7.3.2-6 Diff: 0 Page Ref: 489–496 Objective: (7.3) Solve Exp/Log Equation for Variable
- 354) D ID: TCALC11W 7.8.8-5 Dfif: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log
- 355) B ID: TCALC11W 7.4.5-2 Diff: 0 Page Ref: 498–503 Objective: (7.4) Perform Logarithmic Differentiation

	wer Key name: 155CH.7	Answer Key Testname: 155CH.7	
	D ID: TCALCI1W 7.3.2-2 Diff 0 Page Ref: 489-496	367) D ID: TCALC11W 7.7.11-2 Diff: 0 Page Ref: 520-533	
	Objective: (7.3) Solve Exp/Log Equation for Variable	Objective: (7.7) Solve Initial Value Problem	
	ID: TCALC11W 7.2.1-6	368) B ID: TCALC11W 7.3.3-10	
	Diff: 0 Page Ref: 479-487 Objective: (7.2) Express as a Single Logarithm	Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential	
358)	D ID: TCALC11W 7.8.4-3	369) D ID: TCALC11W 7.8.2-8	
	Diff. 0 Page Ref: 538-545 Objective: (7.8) Find Derivative of Inverse Hyperbolic Function	Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponer	untial Fe
359)	D	370) B	iluai r
	ID: TCALC11W 7.7.5-10 Diff: 0 Page Ref: 520-533	ID: TCALC11W 7.5.1-8 Diff: 0 Page Ref: 505-511	
	Objective: (7.7) Find Derivative: Inverse Trig Function	Objective: (7.5) Solve Apps: Exponential Growth and Decay	
360)	B ID: TCALC11W 7.8.8-7 Diff 0 Page Ref: 538-545	371) C ID: TCALC11W 7.2.5-1 Diff: 0 Page Ref: 479-487	
	Objective: (7.8) Evaluate Inverse Hyperbolic Function in Terms of Natural Log	Objective: (7.2) Solve Apps: Differentiation/Integration Involvi	ing Na
	ID: TCALC11W 7.7.5-8	372) B ID: TCALC11W 7.7.1-4	
	Diff. 0 Page Ref: 520-533 Objective: (7.7) Find Derivative: Inverse Trig Function	Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Value of Inverse Trigonometric Function	
	BI DI: TCALCHW 7.8.9-1	373) C ID: TCALCIIW 72.1-3	
	Diff. 0 Page Ref: 538–545	Diff: 0 Page Ref: 479–487	
	Objective: (7.8) Evaluate Integral in Terms of Natural Log	Objective: (7.2) Express as a Single Logarithm	
	D: TCALC11W 7.8.1-6 Diff. 0 Page Ref: 538-545	374) B ID: TCALC11W 7.2.3-3 Diff: 0 Page Ref: 479-487	
	Objective: (7.8) Find Values of Hyperbolic Function	Objective: (7.2) Evaluate Integral That Yields Natural Log	
364)	C ID: TCALC11W 7.4.5-10	375) D ID: TCALC11W 7.8.7-8	
	Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation	Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function	ion)
365)	D	376) A	
	ID: TCALC11W 7.2.2-8 Diff. 0 Page Ref: 479-487	ID: TCALC11W 7.2.4-2 Diff: 0 Page Ref: 479-487	
366)	Objective: (7.2) Find Derivative of Natural Logarithm B	Objective: (7.2) Perform Logarithmic Differentiation 377) D	
	Di: TCALC11W 7.3.5-6 Diff: 0 Page Ref: 489-496	DD: TCALC11W 7.8.1-3 Diff: 0 Page Ref: 538-545	
		Objective: (7.8) Find Values of Hyperbolic Function	
	101	102	2
	101		2
	101		2
	101		2
Ansv	ver Key	102 Answer Key	2
Ansv		102	2
Ansv Testr 378)	ver Key name: 155CH.7 C	102 Answer Key Testname: 155CH.7 389) D	2
Ansv Testr 378)	wer Key name: 155CH.7	102 Answer Key	2
Ansv Testr 378)	wer Key name: 155CH.7 ID: TCALC11W 7.7.12-1 Dif: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions	Answer Key Testname: 155CH.7 389) D ID: TCALC11W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation	2
Ansv Testr 378) 379)	wer Key name: 155CH.7 C Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B Di: TCALC11W 7.3.3-4	Answer Key Testname: 155CH.7 389) D D: TCALCIIW7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALCIIW7.3.4-3	22
Ansv Testr 378) 379)	wer Key name: 155CH.7 ID: TCALCI1W 7.7.12-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B	Answer Key Testname: 155CH.7 389) D ID: TCALC11W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D	
Ansv Testr 378) 379)	ver Key name: 155CH.7 C ID: TCALCI IW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCI IW 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C	Answer Key Testname: 155CH.7 389) D ID: TCALCIIW 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D ID: TCALCIIW 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D	
Ansv Testr 378) 379) 380)	wer Key name: 155CH.7 C ID: TCALCI1W 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions BID: TCALCI1W 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCI1W 7.7.2-5 Diff 0 Page Ref: 520-533	Answer Key Testname: 155CH.7 389) D ID: TCALC11W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D ID: TCALC11W 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy (ds Implicitly from Eqn w / Log and Ex 391) D ID: TCALC11W 7.8.6-2 Diff: 0 Page Ref: 538-545	xp
Ansv Testr 378) 379) 380)	ver Key name: 155CH.7 C ID: TCALCI IW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCI IW 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCI IW 7.7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions	Answer Key Testname: 155CH.7 389) D D: TCALC11W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALC11W 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 3911 D D: TCALC11W 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392) B	xp
Ansv Testr 378) 380) 381)	wer Key name: 155CH.7 C ID: TCALCI1W 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions BID: TCALCI1W 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCI1W 7.7.2-5 Diff 0 Page Ref: 520-533	Answer Key Testname: 155CH.7 389) D ID: TCALC11W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D ID: TCALC11W 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy (ds Implicitly from Eqn w / Log and Ex 391) D ID: TCALC11W 7.8.6-2 Diff: 0 Page Ref: 538-545	xp
Ansv Testr 378) 379) 380) 381)	wer Key name: 155CH.7 Dif: TCALCI1W 7.7.12-1 Dif: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B D: TCALCI1W 7.3.3-4 Dif: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C Di: TCALCI1W 7.7.2-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALC11W 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions	Answer Key Testname: 155CH.7 389) D D: TCALCIIW 7.1.3-3 Diff-0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALCIIW 7.3.4-3 Diff-0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D D: TCALCIIW 7.8.6-2 Diff-0 Page Ref: 538-545 Objective: (7.3) Evaluate Indefinite Integral (Hyperbolic Function 392) B D: TCALCIIW 7.1.1-3 Diff-0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N)	xp
Ansv Testr 378) 380) 381) 382)	wer Key name: 155CH.7 Dif: TCALCI1W 77.12-1 Dif: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B TCALCI1W 7.3.3-4 Dif: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C Di: TCALCI1W 7.7.2-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALCI1W 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff: 0 Diff: 0 Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Di: TCALCI1W 7.22-10	Answer Key Testname: 155CH.7 389) D D: TCALCIIW 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALCIIW 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D D: TCALCIIW 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.3) Evaluate Indefinite Integral (Hyperbolic Function 392) B D: TCALCIIW 7.1.1-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 393) C D: TCALCIIW 7.8.2-6	xp
Ansv Testr 378) 380) 381) 382)	ver Key name: 155CH.7 C IP: TCALCI IW 7.7.12-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCI IW 7.3.3-4 Diff: 0 Page Ref: 489-996 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCI IW 7.7.2-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCI IW 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C	Answer Key Testname: 155CH.7 389) D D: TCALCHW7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALCHW7.3.4-3 Diff: 0 Page Ref: 489-406 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D D: TCALCHW7.8.6-2 Diff: 0 Page Ref: 438-466 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Functic 392) B D: TCALCHW7.1.1-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine if Function is One-to-One (Y/N) 393) C	xp ion)
Ansv Testr 378) 380) 381) 382)	ver Key name: 155CH.7 C ID: TCALCHW 7.7.12-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCHW 7.3.3-4 Diff: 0 Page Ref: 489-596 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCHW 7.72-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCHW 7.72-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCHW 7.22-10 Diff: 0 Page Ref: 439-487 Objective: (7.2) Find Derivative of Natural Logarithm	Answer Key Testname: 155CH.7 389) D ID: TCALCHW7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D ID: TCALCHW7.3.4-3 Diff: 0 Page Ref: 489-466 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 00 D ID: TCALCHW7.3.6-2 Diff: 0 Page Ref: 438-456 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392) B ID: TCALCHW7.1.1-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 393) C ID: TCALCHW7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponer	xp ion)
Ansv Testr 378) 380) 381) 382) 383)	ver Key name: 155CH.7 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B DTCALCIIW 77.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C DTCALCIIW 77.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A DTCALCIIW 77.2-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff 0 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff 0 Diff 0 Page Ref: 407-487 Objective: (7.2) Evaluate Inverse Expressions C Diff 0 Diff 0 Page Ref: 479-487 Objective: (7.2) Find Derivative of Natural Logarithm A Diff 0 Diff 0 Page Ref: 407-487 Diff: 0 Page Ref: 407-487 Diff: 0 Page Ref: 407-487	Answer Key Testname: 155CH.7 389) D DD: TCALCHW 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D DD: TCALCHW 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy (4k Implicitly from Eqn w / Log and Ex 391) D DD: TCALCHW 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Featule Indefinite Integral (Hyperbolic Function 392) B DD: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 469-475 Objective: (7.8) Finduze Indefinite Integral (Hyperbolic Function 392) B DD: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 489-475 Objective: (7.8) Write Hyperbolic Function is One-to-One (Y/N) 393) C DD: TCALCHW 7.8.2-6 Diff: 0 Page Ref: 588-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponer 394) B DD: TCALCHW 7.4.4-10 Diff: 0 Page Ref: 498-503	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383)	ver Key name: 155CH.7 C ID: TCALCHW 7.7.12-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCHW 7.3.3-4 Diff: 0 Page Ref: 489-996 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCHW 7.72-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCHW 7.72-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCHW 7.72-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCHW 7.22-10 Diff: 0 Page Ref: 459-487 Objective: (7.2) Find Derivative of Natural Logarithm A ID: TCALCHW 7.1.1-4 Diff: 0 Page Ref: 459-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) D D	Answer Key Testname: 155CH.7 389) D ID: TCALCI1W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D ID: TCALCI1W 7.3.4-3 Diff: 0 Page Ref: 489-406 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D ID: TCALCI1W 7.8.6-2 Diff: 0 Page Ref: 489-406 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392) B ID: TCALCI1W 7.1.1-3 Diff: 0 Page Ref: 489-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 393) C ID: TCALCI1W 7.8.2-6 Diff: 0 Page Ref: 489-475 Objective: (7.8) Write Hyperbolic Function in Terms of Exponer 394) B ID: TCALCI1W 7.4.4-10 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 395) B	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383) 383)	wer Key name: 155CH.7 Diff:0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B DTCALCIIW 77.3.3-4 Diff:0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C DTCALCIIW 77.2-5 Diff:0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A DT: TCALCIIW 77.2-2 Diff:0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C DT: TCALCIIW 77.2-2 Diff:0 Page Ref: 497-487 Objective: (7.2) Fund Derivative of Natural Logarithm A DT: TCALCIIW 7.1.1-4 Diff:0 Page Ref: 497-487 Objective: (7.1) Determine If Function is One-to-One (Y/N)	Answer Key Testname: 155CH.7 389) D DD: TCALCHW 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D DD: TCALCHW 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy (4k Implicitly from Eqn w / Log and Ex 391) D DD: TCALCHW 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Featule Indefinite Integral (Hyperbolic Function 392) B DD: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 469-475 Objective: (7.8) Finduze Indefinite Integral (Hyperbolic Function 392) B DD: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 489-475 Objective: (7.8) Write Hyperbolic Function is One-to-One (Y/N) 393) C DD: TCALCHW 7.8.2-6 Diff: 0 Page Ref: 588-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponer 394) B DD: TCALCHW 7.4.4-10 Diff: 0 Page Ref: 498-503	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383) 384)	ver Key name: 155CH.7 C Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B Diff: 0 D: CALCHW 7.3.3-4 Diff: 0 Page Ref: 489-496 Objective: (7.7) Fund Derivative of Natural Exponential C Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff: 0 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C Diff: 0 Diff: 0 Page Ref: 420-533 Objective: (7.2) Fund Derivative of Natural Logarithm A Diff: 0 Diff: 0 Page Ref: 489-487 Objective: (7.1) Determine If Function is One-to-One (Y/N) D Diff: 0 Diff: 0 Page Ref: 489-495 Objective: (7.3) Solve Apps: The Exponential Function	Answer Key Testname: 155CH.7 389) D D: TCALCHW7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390) D D: TCALCHW7.3.4-3 Diff: 0 Page Ref: 489-406 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391) D D: TCALCHW7.3.4-2 Diff: 0 Page Ref: 438-456 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Functio 392) B D: TCALCHW7.1.1-3 Diff: 0 Page Ref: 438-455 Objective: (7.8) Write Hyperbolic Function is One-to-One (Y/N) 393) C D: TCALCHW7.8.2-6 Diff: 0 Page Ref: 469-475 Objective: (7.4) Write Hyperbolic Function in Terms of Exponer 394) B D: TCALCHW7.8.2-6 Diff: 0 Page Ref: 488-503 Objective: (7.4) Find Derivative of General Exponential 395) B D: TCALCHW7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.4) Find Derivative of General Exponential 395 B D: TCALCHW7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.4) Find Derivative of General Exponential	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383) 384) 385)	ver Key name: 155CH.7 C ID: TCALCHW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCHW 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCHW 7.7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCHW 7.7.2-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCHW 7.7.2-2 Diff 0 Page Ref: 420-437 Objective: (7.7) Evaluate Inverse Expressions C C ID: TCALCHW 7.2.2-10 Diff 0 Page Ref: 439-447 Objective: (7.2) Find Derivative of Natural Logarithm A A ID: TCALCHW 7.1.1-4 Diff 0 Page Ref: 480-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) D ID: TCALCHW 7.3.7-9 Diff 0 Page Ref: 480-495 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCHW 7.3.7-9 <td>Answer Key Testname: 155CH.7 389 D D: TCALCI1W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390 D D: TCALCI1W 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391 D D: TCALCI1W 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCI1W 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCI1W 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 393 C DD: TCALCI1W 7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 394 B D: TCALCI1W 7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 395 B D: TCALCI1W 7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 396 B D: TCALCI1W 7.3.1-7</td> <td>xp ion)</td>	Answer Key Testname: 155CH.7 389 D D: TCALCI1W 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390 D D: TCALCI1W 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 391 D D: TCALCI1W 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCI1W 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCI1W 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 393 C DD: TCALCI1W 7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 394 B D: TCALCI1W 7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 395 B D: TCALCI1W 7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.8) Check Integration Formula 396 B D: TCALCI1W 7.3.1-7	xp ion)
Answ Testr 378) 380) 381) 382) 383) 383) 384) 385)	wer Key hame: 155CH.7 C D: TCALC11W 77.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B D: TCALC11W 7.3.3-4 Diff 0 Page Ref: 439-496 Objective: (7.3) Find Derivative of Natural Exponential C D: TCALC11W 7.72-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALC11W 7.72-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C D: TCALC11W 7.72-2 Diff 0 Page Ref: 459-487 Objective: (7.2) Find Derivative of Natural Logarithm A D: TCALC11W 7.11-4 Diff 0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) D D: TCALC11W 7.3.7-9 Diff 0 Page Ref: 489-496	Answer Key Testname: 155CH.7 389) D D: TCALCIIW7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390 D D: TCALCIIW7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn.w/ Log and Ex 391 D D: TCALCIIW7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCIIW7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.1) Determine if Function is One-to-One (Y/N) 393 C D: TCALCIIW7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.4) Write Hyperbolic Function in Terms of Exponent 394 B D: TCALCIIW7.4.4-10 Diff: 0 Page Ref: 538-545 Objective: (7.4) Find Derivative of General Exponential 395 B D: TCALCIIW7.8.5-9 Diff: 0 Page Ref: 538-545	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 384) 385)	ver Key name: 155CH.7 C IP: CALCHW 77.12-1 Diff:0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: CALCHW 73.3-4 Diff:0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: CALCHW 7.72-5 Diff:0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: CALCHW 7.72-2 Diff:0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: CALCHW 7.72-2 Diff:0 Page Ref: 490-497 Objective: (7.2) Evaluate Inverse Expressions C ID: CALCHW 7.2.2-10 Diff:0 Page Ref: 489-495 Objective: (7.2) Find Derivative of Natural Logarithm A ID: CALCHW 7.1.1-4 Diff:0 Page Ref: 489-495 Objective: (7.3) Solve Apps: The Exponential Function C ID: CALCHW 7.3.7-9 Diff:0 Page Ref: 520-533 Objective: (7.3) Solve Apps: The Exponential Function C ID: CALCHW 7.3.1-4 Diff:0 Page Ref:	Answer Key Testname: 155CH.7 389) D ID: TCALCI1W7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 300 D ID: TCALCI1W7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 301 D ID: TCALCI1W7.8.6-2 Diff: 0 Page Ref: 489-496 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B ID: TCALCI1W7.1.1-3 Diff: 0 Page Ref: 489-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 393 C ID: TCALCI1W7.8.2-6 Diff: 0 Page Ref: 489-475 Objective: (7.4) Find Derivative of General Exponential 395 B ID: TCALCI1W7.8.5-9 Diff: 0 Page Ref: 489-503 Objective: (7.8) Check Integration Formula 396 B ID: TCALCI1W7.8.5-9 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 397 B	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383) 384) 385) 386)	wer Key hame: 155CH.7 C D: TCALC11W 7.7.12-1 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions D: TCALC11W 7.3.3-4 Diff: 0 Page Ref: 439-496 Objective: (7.3) Find Derivative of Natural Exponential C D: TCALC11W 7.7.2-5 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALC11W 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C D: TCALC11W 7.7.2-2 Diff: 0 Page Ref: 479-487 Objective: (7.7) Evaluate Inverse Expressions C D: TCALC11W 7.1.1-4 Diff: 0 Page Ref: 499-495 Objective: (7.1) Determine If Function is One-to-One (Y/N) D D: TCALC11W 7.1.1-4 Diff: 0 Page Ref: 499-496 Objective: (7.3) Solve Apps: The Exponential Function C D: TCALC11W 7.7.1-4 Diff: 0 Page Ref: 420-533 Objective: (7.7) Solve Initial Value Problem A D: TCALC11W 7.7.1-2 Diff: 0 Page Ref: 520-533 District (7.7) Solve Initial Value Problem A D: TCALC11W 7.7.1-2 Diff: 0 Page Ref: 520-533 District (7.7) Solve Initial Value Problem	Answer Key Testname: 155CH.7 389) D D: TCALCIIW7.13-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390 D D: TCALCIIW7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy/dx Implicitly from Eqn.w/ Log and Ex 391 D D: TCALCIIW7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B D: TCALCIIW7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.1) Determine if Function is One-to-One (Y/N) 393 C D: TCALCIIW7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.4) Underwine if Function in Terms of Exponent 391 B D: TCALCIIW7.8.2-6 Diff: 0 Page Ref: 538-545 Objective: (7.4) Write Hyperbolic Function in Terms of Exponent 393 B D: TCALCIIW7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.4) Find Derivative of General Exponential 395 B D: TCALCIIW7.8.5-9 Diff: 0 Page Ref: 538-545 Objective: (7.3) Find Value of Exp/Log Expression 397 B D: TCALCIIW7.7.4.7-9 Diff: 0 Page Ref: 489-406 Objective: (7.3) Find Value of Exp/Log Expression 397 B D: TCALCIIW7.7.4.7-9 Diff: 0 Page Ref: 489-503	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 383) 384) 385) 386)	Ver Key name: 155CH.7 C ID: TCALCIIW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCIIW 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCIIW 7.7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCIIW 7.7.2-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCIIW 7.2.2-10 Diff 0 Page Ref: 420-437 Objective: (7.2) Find Derivative of Natural Logarithm A ID: TCALCIIW 7.1.1-4 Diff 0 Page Ref: 489-495 Objective: (7.1) Determine If Function is One-to-One (Y/N) D ID: TCALCIIW 7.3.7-9 Diff 0 Page Ref: 420-435 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCIIW 7.3.7-9 Diff 0 Page Ref: 420-435 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCIIW 7.7.1-4	Answer Key Testname: 155CH.7 389 D D: TCALCI1W7.1.3-3 Diff: 0 Page Ref. 469-475 Objective: (7.1) Determine Inverse from Equation 90 D D: TCALCI1W7.3.4-3 Diff: 0 Page Ref. 489-466 Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Ex 91 D D: TCALCI1W7.8.6-2 Diff: 0 Page Ref. 533-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 92 B D: TCALCI1W7.1.1-3 Diff: 0 Page Ref. 533-545 Objective: (7.1) Determine If Function is One-to-One (Y/N) 93 C D: TCALCI1W7.8.2-6 Diff: 0 Page Ref. 533-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 94 B D: TCALCI1W7.8.2-6 Diff: 0 Page Ref. 533-545 Objective: (7.4) Write Hyperbolic Function in Terms of Exponent 95 B D: TCALCI1W7.8.5-9 Diff: 0 Page Ref. 533-545 Objective: (7.8) Check Integration Formula 96 B D: TCALCI1W7.8.5-9 Diff: 0 Page Ref. 533-545 Objective: (7.8) Check Integration Formula 96 B D: TCALCI1W7.3.1-7 Diff: 0 Page Ref. 498-503 Objective: (7.4) Find Derivative of General Exponential 97 B D: TCALCI1W7.4.4-9 Diff: 0 Page Ref. 498-503 Objective: (7.4) Find Derivative of General Exponential	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 384) 385) 386) 386) 387)	ver Key name: 155CH.7 C ID: TCALCI W 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions B ID: TCALCI W 7.3.3-4 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential C ID: TCALCI W 7.72-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A ID: TCALCI W 7.72-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions C ID: TCALCI W 7.22-10 Diff 0 Page Ref: 420-437 Objective: (7.2) Find Derivative of Natural Logarithm A ID: TCALCI W 7.11-4 Diff 0 Page Ref: 489-495 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCI W 7.3.7-9 Diff 0 Page Ref: 420-453 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCI W 7.3.7-9 Diff 0 Page Ref: 420-453 Objective: (7.3) Solve Apps: The Exponential Function C ID: TCALCI W 7.7.1-4 Diff	Answer Key Testname: 155CH.7 389 D DF TCALCIIW7.1.3-3 Diff: 0 Page Ref. 469-475 Objective: (7.1) Determine Inverse from Equation 90 D DF TCALCIIW7.3.4-3 Diff: 0 Page Ref. 489-466 Objective: (7.3) Find dy/dx Implicitly from Eqn.w/ Log and Ex 91 D DF TCALCIIW7.8.6-2 Diff: 0 Page Ref. 533-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 92 B DF TCALCIIW7.1.1-3 Diff: 0 Page Ref. 533-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 93 D DF TCALCIIW7.1.1-3 Diff: 0 Page Ref. 533-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 94 B DF TCALCIIW7.8.2-6 Diff: 0 Page Ref. 533-545 Objective: (7.8) Write Hyperbolic Function in Terms of Exponent 95 B DF TCALCIIW7.8.5-9 Diff: 0 Page Ref. 533-545 Objective: (7.8) Check Integration Formula 96 B DF TCALCIIW7.8.5-9 Diff: 0 Page Ref. 533-545 Objective: (7.8) Check Integration Formula 96 B DF TCALCIIW7.3.1-7 Diff: 0 Page Ref. 498-503 Objective: (7.4) Find Derivative of General Exponential 97 B DF TCALCIIW7.3.4-9 Diff: 0 Page Ref. 498-503 Objective: (7.4) Find Derivative of General Exponential 98 B DF TCALCIIW7.3.4-4	xp ion)
Ansv Testr 378) 380) 381) 382) 383) 384) 385) 386) 387)	wer Key name: 155CH.7 C D: TCALCTIW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps Inverse Trigonometric Functions b D: TCALCTIW 7.3.3-4 Diff 0 Page Ref: 580-543 Objective: (7.3) Find Derivative of Natural Exponential C D: TCALCTIW 7.7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALCTIW 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.2) Evaluate Inverse Expressions C D: TCALCTIW 7.2.2-2 Diff: 0 Page Ref: 499-487 Objective: (7.2) Find Derivative of Natural Logarithm A D: TCALCTIW 7.1.1-4 Diff: 0 Page Ref: 499-497 Objective: (7.3) Solve Apps: The Exponential Function C D: TCALCTIW 7.7.1-4 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Initial Value Problem A D: TCALCTIW 7.7.1-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Value of Inverse Trigonometric Function B D: TCALCTIW 7.6.1-6 Diff: 0 Page Ref: 510-533 Objective: (7.7) Find Value of Inverse Trigonometric Function B D: TCALCTIW 7.6.1-6 Diff: 0 Page Ref: 520-533 Objective: (7.6) Compare Growth Rates	Answer Key Testname: 155CH.7 389 D DFTCALCHW7.1.3-3 Diff-0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 390 D DFTCALCHW7.3.4-3 Diff-0 Page Ref: 469-476 Objective: (7.3) Find dy (dx Implicitly from Eqn w / Log and Ex 391 D DFTCALCHW7.8.6-2 Diff-0 Page Ref: 38-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 392 B DFTCALCHW7.1.1-3 Diff-0 Page Ref: 469-475 Objective: (7.1) Determine If Function is One-to-One (Y/N) 392 C DFTCALCHW7.8.2-6 Diff-0 Page Ref: 469-475 Objective: (7.4) Write Hyperbolic Function in Terms of Exponer 393 B DFTCALCHW7.8.2-6 Diff-0 Page Ref: 459-503 Objective: (7.4) Find Derivative of General Exponential 395 B DFTCALCHW7.3.1-7 Diff-0 Page Ref: 459-503 Objective: (7.3) Find Value of Exp/Log Expression 397 B DFTCALCHW7.4.4-9 Diff-0 Page Ref: 489-503 Objective: (7.4) Find Derivative of General Exponential 396 B DFTCALCHW7.4.4-9 Diff-0 Page Ref: 489-503 Objective: (7.4) Find Derivative of General Exponential 396 B	xp ion)
Answ Testr 378) 380) 381) 382) 383) 384) 385) 386) 386) 388)	wer Key name: 155CH.7 C D: TCALCTIW 7.7.12-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Apps Inverse Trigonometric Functions b D: TCALCTIW 7.3.3-4 Diff 0 Page Ref: 580-543 Objective: (7.3) Find Derivative of Natural Exponential C D: TCALCTIW 7.7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Inverse Expressions A D: TCALCTIW 7.7.2-2 Diff: 0 Page Ref: 520-533 Objective: (7.2) Evaluate Inverse Expressions C D: TCALCTIW 7.2.2-2 Diff: 0 Page Ref: 499-487 Objective: (7.2) Find Derivative of Natural Logarithm A D: TCALCTIW 7.1.1-4 Diff: 0 Page Ref: 499-497 Objective: (7.3) Solve Apps: The Exponential Function C D: TCALCTIW 7.7.1-4 Diff: 0 Page Ref: 520-533 Objective: (7.3) Solve Initial Value Problem A D: TCALCTIW 7.7.1-4 Diff: 0 Page Ref: 520-533 Objective: (7.7) Find Value of Inverse Trigonometric Function B D: TCALCTIW 7.6.1-6 Diff: 0 Page Ref: 510-533 Objective: (7.7) Find Value of Inverse Trigonometric Function B D: TCALCTIW 7.6.1-6 Diff: 0 Page Ref: 520-533 Objective: (7.6) Compare Growth Rates	Answer Key Testname: 155CH.7 389) D DP: TCALCHW 7.1.3-3 Diff: 0 Page Ref: 469-475 Objective: (7.1) Determine Inverse from Equation 300) D DP: TCALCHW 7.3.4-3 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find dy (dx Implicitly from Eqn w/ Log and Ex 301) D DP: TCALCHW 7.8.6-2 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 320) B DP: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function 321) B DP: TCALCHW 7.1.1-3 Diff: 0 Page Ref: 538-545 Objective: (7.4) Determine If Function is One-to-One (Y/N) 322 Diff: 0 Page Ref: 538-545 Objective: (7.4) Find Derivative of General Exponential 339) B DP: TCALCHW 7.8.2-9 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 330) B DP: TCALCHW 7.3.1-7 Diff: 0 Page Ref: 498-503 Objective: (7.3) Find Value of Exp/Log Expression 330 B) DP: TCALCHW 7.4.4-9 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 340) B DP: TCALCHW 7.4.4-9 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 341) B DP: TCALCHW 7.4.4-9 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 343 DP: TCALCHW 7.1.3-4 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 344 DP: TCALCHW 7.1.3-4 Diff: 0 Page Ref: 498-503 Diff: 0 Page Ref: 498-503 Dif	xp ion)

Answer Key Testname: 155CH.7	Answer Key Testname: 155CH.7
 Testname: 155CH.7 400) A ID: TCALC11W 7.3.1-2 Diff 0 Page Ref: 489-496 Objective: (7.3) Find Value of Exp/Log Expression 401) D ID: TCALC11W 7.7.7-2 Diff 0 Page Ref: 520-533 Objective: (7.7) Evaluate Integral: Completing the Square 402) D ID: TCALC11W 7.7.4-1 Diff 0 Page Ref: 520-533 Objective: (7.7) Find Limit: Inverse Trig Function 403) C ID: TCALC11W 7.7.1-5 Diff 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Trigonometric Function 404) D ID: TCALC11W 7.7.2-7 Diff 0 Page Ref: 520-533 Objective: (7.7) Write Inverse Function as Expression in u 405) C ID: TCALC11W 7.2-5 Diff 0 Page Ref: 520-533 Objective: (7.2) Find Derivative of Natural Logarithm 406 B): TCALC11W 7.7-5-9 Diff 0 Page Ref: 520-533 	411) A ID: TCALCHW 72.3-5 Diff: 0 Page Ref: 479-487 Objective: (7.2) Evaluate Integral That Yields Natural Log 412) D ID: TCALCHW 7.4.2-3 Diff: 0 Page Ref: 498-503 Objective: (7.4) Rewrite Expression as a Ratio of Natural Logs 413) B ID: TCALCHW 7.8.1-5 Diff: 0 Page Ref: 538-545 Objective: (7.8) Find Values of Hyperbolic Function 414) D ID: TCALCHW 7.4.5-6 Diff: 0 Page Ref: 498-503 Objective: (7.4) Perform Logarithmic Differentiation 415) C ID: TCALCHW 7.1.4-4 Diff: 0 Page Ref: 498-503 Objective: (7.1) Find Domain and Range of Inverse 416) B ID: TCALCHW 7.5.1-9 Diff: 0 Page Ref: 450-511 Objective: (7.5) Solve Apps Exponential Growth and Decay 417) A Diff: 0 Page Ref: 505-511 017) A Diff: 0 Page Ref: 505-511
 Objective (7.7) Find Derivative Inverse Trig Function 407) C Diff 0 Page Ref: 520-533 Objective: (7.7) Solve Initial Value Problem 408) B D: TCALC11W 7.7.12-3 Diff: 0 Page Ref: 520-533 Objective: (7.7) Solve Apps: Inverse Trigonometric Functions 409) D D: TCALC11W 7.3.3-8 Diff: 0 Page Ref: 489-496 Objective: (7.3) Find Derivative of Natural Exponential 410) C D: TCALC11W 7.3.5-10 Diff: 0 Page Ref: 489-496 Objective: (7.3) Evaluate Integral of Natural Exponential Func 	 Diff. 0 Tage Ref: 514-518 Objective: (7.5) Solve Apps: Exponential Growth and Decay 418) B ID: TCALCTIW 7.4.4-1 Diff: 0 Page Ref: 498-503 Objective: (7.4) Find Derivative of General Exponential 419) TRUE ID: TCALCTIW 7.6.2-8 Diff: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 420) TRUE ID: TCALCTIW 7.6.2-2 Diff: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 421) FALSE ID: TCALCTIW 7.6.2-3 Diff: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F)
105	106
Answer Key Testname: 155CH.7 42) FALSE ID.TCALCHW7.6.2-10 Dif: 0 Page Ref: 514-518 Objective: (7.0) Use Big-oh and Little-oh Notation (T/F) 42) TRUE ID.TCALCHW7.6.2-5 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 42) TCALCHW7.6.2-6 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 42) FALSE ID.TCALCHW7.6.2-9 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 43) TCALCHW7.6.2-4 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 43) TCALCHW7.6.2-4 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 43) TCALCHW7.6.2-1 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 43) TCALCHW7.6.2-1 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 43) TCALCHW7.6.2-7 Dif: 0 Page Ref: 514-518 Objective: (7.6) Use Big-oh and Little-oh Notation (T/F)	
107	