Date	Fall 2018-2019	Credits	4
Course Title	Mathematics I	Course	MATH 113
		Number	
Pre-requisite	None	Co-requisite	None
(s)		(s)	
Hours	75	Out of Class	150
		Work Hours	

Place and Time of Class Meeting

Name and Contact Information of Instructor

Book required

(The School recognizes the use of the textbook in the classroom as part of the educational methodology and strategy applied in diverse materials. The textbook is part of the curriculum and is used to reach the student in an effective manner in the classroom. Every student is expected to acquire and use the textbook.)

Thomas' Calculus, 13th Edition in SI Units George B. Thomas, Maurice D. Weir, Joel R. Hass Pearson Education Inc.

Classroom expectations for students

Attendance Policy

Students are liable to attend every course, practical and laboratory work of the program they are enrolled and to take the exams and participate in academic work required for achieving the course. Student attendance to all courses is compulsory. Students who do not attend a minimum 70% of the theoretical courses and 80% of the practical courses will be considered as absent for the related courses. Students who do not meet the mandatory minimum requirement of attendance will fail the course. Students who fail a course for not fulfilling minimum attendance requirement are obliged to meet the attendance requirement when they re-take the course.

Student Tardiness Policy

Students are permitted to arrive to the class in the first 15 minutes after the scheduled start of the course; extension of tardiness time is in instructor's discretion.

Course Description (must correspond exactly to Catalog description)

This course will investigate limits, rules of limits, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, maximum-minimum problems, curve sketching, applied optimization problems, integration, Riemann sums, definite integrals, area between curves, volumes of revolution, transcendental functions.

Learning Objectives

At the end of this course the student will be able to:

- Calculate limits by substitution and by eliminating zero denominators.
- Calculate limits of rational functions at infinity.
- Determine continuity behavior of a function at a certain point.
- Obtain limits involving infinity and find asymptotes of a function.
- Apply the basic rules of differentiation and use them to find derivatives of products and quotients.
- Define derivatives of polynomials, trigonometric, exponential, hyperbolic, logarithmic and inverse trigonometric functions.
- Apply the chain rule to find derivatives of composite functions.
- Sketch graphs of rational functions including finding asymptotes, tangents and normals to graphs of functions given in explicit, implicit and parametric forms
- Define standard indefinite integrals and basic rules of indefinite integration.
- Evaluate integrals by substitution with and without suitable hints.
- Evaluate integrals of rational functions by partial fractions and repeated use of integration by parts.
- Write the expression of the fundamental theorem of calculus and apply it for evaluating definite integrals and derivatives of integrals with variable limits of integration
- Find area between curves, volumes and surface areas of solids of revolution, and arc length.

Topical Outline and Schedule

DATE	WEEK 1
SPECIFIC	Describe the course.
OBJECTIVES	 Explain the areas the calculus is needed.
0202011120	 Define dependent and independent variables, function, domain, and
	range.
	 Graph the easy functions
	 Define increasing/decreasing and even/odd functions.
	 Calculate the result of the operations of functions.
	 Shift, scale and reflect a graph of a function.
	 Explain trigonometric functions and their properties.
TOPIC (S)	 Syllabus.
10110 (5)	 1.1 Functions and Their Graphs
	 1.1 Functions and Then Graphs 1.2 Combining Functions; Shifting and Scaling Graphs
	 1.2 Combining Functions, Similar and Scaling Graphs 1.3 Trigonometric Functions
LEARNING	Discussion of Syllabus.
ACTIVITIES	Discuss the effect of the functions' behavior on their graphs.
ACTIVITES	Obtain the trigonometric identities step by step by discussion.
	Completion of exercises and problems.
OUT OF	Review the Syllabus.
CLASS	Homework : Read Chapter 1, and sections 2.1,.2.2, 2.3 and be prepared to
WORK	discuss in class.
ASSIGNMENT	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
	2015 Pearson Education)
DATE	Doing Homework I WEEK 2
DATE SPECIFIC	
OBJECTIVES	• Define average rate of the change, secant line, tangent line and slope of a curve.
ODJECTIVES	
	 Solve related examples. Explain and exemplify the limit laws
	• Explain and exemplify the minit laws
	• Eliminate zero dominatore algobraically to calculate the limit
	 Eliminate zero dominators algebraically to calculate the limit. Explain the sandwich theorem
	• Explain the sandwich theorem.
	Explain the sandwich theorem.Write precise definition of the limit by the aim of the students.
	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons.
	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon.
TOPIC (S)	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws.
TOPIC (S)	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity
TOPIC (S)	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves
TOPIC (S)	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws
	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit
LEARNING	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit
	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit Illustrate the limit of a function at a certain point by using its graph and comparing values of the function at the neighborhood of the point.
LEARNING	 Explain the sandwich theorem. Write precise definition of the limit by the aim of the students. Find deltas algebraically for given epsilons. Explain how to find a delta for a given function, L, x and epsilon. Use the precise definition of the limit to prove the limit laws. 2 Limits and Continuity 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit

al
ons.
ns.
115.
1
les.
point.
1.1. 1
nd its the
red to
pyright
pyright
finition.
iont
ient,
in class.
pyright
Prigin

ASSIGNMENT	
DATE	WEEK 5
SPECIFIC	• Define the instantaneous rate of change.
OBJECTIVES	• Explain motion along a line.
	• Mention the applications of the derivative in economics.
	• Define the derivatives of the trigonometric functions and solve some
	examples.
	• Explain the chain rule and solve some examples about repeated use of
	it.
TOPIC (S)	• 3.4 The Derivative as a Rate of Change
	 3.5 Derivatives of Trigonometric Functions
	• 3.6 The Chain Rule
LEARNING	Discuss how to find velocity by using position function.
ACTIVITIES	Discuss how to find acceleration by the aim of the velocity function.
	Discuss the relationship between jerk and acceleration.
	Let the students obtain the derivative of the tangent function by using the
	derivatives of the sine and cosine functions.
OUT OF	Completion of exercises and problems. Homework : Read sections 3.7, 3.8, 3.9, and be prepared to discuss in class.
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
WORK	2015 Pearson Education)
ASSIGNMENT	Doing Homework II
DATE	WEEK 6
SPECIFIC	• Explain how to calculate the derivative of an implicitly defined
OBJECTIVES	function.
	 Calculate the derivatives of higher order. Solve problems about related rates.
	• Calculate the derivatives of higher order.
	Calculate the derivatives of higher order.Solve problems about related rates.
	Calculate the derivatives of higher order.Solve problems about related rates.Define linearization and differential of a function.
TOPIC (S)	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials.
TOPIC (S)	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation.
TOPIC (S)	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton
TOPIC (S)	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates
	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials
LEARNING	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of
LEARNING	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students.
LEARNING ACTIVITIES	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems.
LEARNING ACTIVITIES OUT OF	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class.
LEARNING ACTIVITIES OUT OF CLASS	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
LEARNING ACTIVITIES OUT OF CLASS WORK	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)
LEARNING ACTIVITIES OUT OF CLASS WORK ASSIGNMENT	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework III
LEARNING ACTIVITIES OUT OF CLASS WORK ASSIGNMENT DATE	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework III
LEARNING ACTIVITIES OUT OF CLASS WORK ASSIGNMENT	 Calculate the derivatives of higher order. Solve problems about related rates. Define linearization and differential of a function. Compute the estimation of an unknown by using differentials. Find the error in differential approximation. 3.7 Implicit Differentiaton 3.8 Related Rates 3.9 Linearization and Differentials Rearrange the formulas of the tangent line and the normal line for implicitly defined functions. Construct the differential equations of the problems step by step by the aim of the students. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework III

	• Define increasing and decreasing functions.
	• Explain the first derivative test for local extrema.
TOPIC (S)	4 Applications of Derivatives
	4.1 Extreme Values of Functions
	4.2 The Mean Value Theorem
	4.3 Monotonic Functions and the First Derivative Test
LEARNING	Discuss how to find the absolute extrema of a continuous function on a finite
ACTIVITIES	closed interval.
	Discuss how to determine the monotonic behavior of the function by using
	derivative.
	Completion of exercises and problems.
OUT OF	Homework: Read sections 4.4, 4.5, 4.7 and be prepared to discuss in class.
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
WORK	2015 Pearson Education)
ASSIGNMENT	Doing Homework III
DATE	WEEK 8
SPECIFIC	MIDTERM EXAM I
OBJECTIVES	 Define the concavity and explain second derivative test.
0202011120	 Define the points of inflection and solve some examples.
	• Explain the second derivative test for local extrema.
	• Explain the steps for sketching the graph of a function.
	• Solve applied optimization problems.
	• Explain antiderivative of a function and the related theorems.
	• Define indefinite integral and the related terms.
TOPIC (S)	4.4 Concavity and Curve Sketching
	4.5 Applied Optimization
	4.7 Antiderivatives
LEARNING	Discuss how to determine concavity of the function on an interval.
ACTIVITIES	Help the students to plot the inflection points on the graph by themselves.
	Construct the objective function of the problem by the aim of the students.
	Discuss the relationship between antiderivative and the integral.
	Completion of exercises and problems.
OUT OF	Homework: Read Chapter 5
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
WORK	2015 Pearson Education
ASSIGNMENT	Doing Homework IV
DATE	WEEK 9
SPECIFIC	
OBJECTIVES	
TOPIC (S)	
LEARNING	
ACTIVITIES	
OUT OF	Homework: Read Chapter 5
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
CLASS	2015 Pearson Education)

WORK	Doing Homework IV
ASSIGNMENT	
DATE	WEEK 10
SPECIFIC OBJECTIVES	 Estimate the area of a region by using lower sums, midpoint rule and upper sums. Explain the finite sums, and denote its notation.
	• Explain some properties of the finite sums.
	 Calculate the limits of the finite sums as n goes to infinity.
	 Define definite integral of a function over a closed interval and
	explain related theorems.
	 Mention the properties of the definite integrals.
	 Calculate the area under the graph of a nonnegative function.
	 Calculate the average value of a continuous function.
TOPIC (S)	5 Integration
	5.1 Area and Estimating with Finite Sums
	5.2 Sigma Notation and Limits of Finite Sums
	5.3 The Definite Integral
LEARNING	Discuss how to compute the sum.
ACTIVITIES	Completion of exercises and problems.
OUT OF	Homework: Read section 5.4, 5.5, 5.6 and be prepared to discuss in the
CLASS	class.
WORK	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)
ASSIGNMENT	Doing Homework V
DATE	WEEK 11
SPECIFIC	• Explain the mean value theorem for definite integrals, fundamental
OBJECTIVES	theorem of calculus, and net change theorem.
	• Explain the relationship between integration and differentiation.
	• Calculate the total area of a region.
	• Explain how to calculate the definite integrals by using substitution
	method.
	• Explain the substitution method in definite integrals.
	• Explain the definite integral of the even and od functions on the
	symmetric interval.
	• Explain calculating the areas between curves.
TOPIC (S)	5.4 The Fundamental Theorem of Calculus
	5.5 Indefinite Integrals and the Substitution Method
	5.6 Substitution and Area Between Curves
LEARNING ACTIVITIES	Discuss how to calculate the area of a region bounded by a negative function. Discuss how to use substitution method in definite integrals.
ACTIVITIES	Discuss how to use substitution method in definite integrals. Discuss the simplicity of the calculating integral of an even/odd function.
	Completion of exercises and problems.
OUT OF	Homework: Read Chapter 6
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
WORK	2015 Pearson Education)
ASSIGNMENT	Doing Homework V

DATE	WEEK 12
SPECIFIC	MIDTERM EXAM II
OBJECTIVES	 Calculate the volume by using cross-sections.
	 Calculate the volume of a solid of revolution by using disc method.
	 Calculate the volume of a solid of revolution by using washer method.
	 Calculate the volume of a solid of revolution by using the shell
	method.
	• Explain the formula of the arc length of a curve and solve some
	examples.
	• Define the area of the surface generated by revolving a curve.
TOPIC (S)	Applications of Definite Integrals
	6.1 Volumes Using Cross-Sections
	6.2 Volumes Using Cylindrical Shells
	6.3 Arc Length
	6.4 Areas of the Surfaces of Revolution
LEARNING	Obtain the formula of the volume by discussion.
ACTIVITIES	Find the formula of the volume by using disc method step by step.
	Write the formula of the volume by using washer method with perceptions of
	the students.
	Write the formula of the volume by using shell method with perceptions of
	the students.
OUT OF	Completion of exercises and problems. Homework: Read Chapter 7
CLASS	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
WORK	2015 Pearson Education)
ASSIGNMENT	Doing Homework VI
DATE	WEEK 13
SPECIFIC	• Define one-to-one and inverse functions.
OBJECTIVES	• Explain how to calculate the derivatives of the inverse function of a
	differentiable function.
	• Define the natural logarithm and calculate its derivative by using the
	fundamental theorem of calculus.
	• Explain the properties of the logarithms.
	• Calculate the integrals of the tan x, cot x, sec x, and csc x by the aim
	of the logarithmic functions.
	• Explain the logarithmic differentiation.
	• Define natural exponantial function and calculate its derivative by the
	aim of the logarithmic derivative.
	• Explain the properties of the general exponantial functions.
	• Obtain the derivative and antiderivative of the general exponantial
	function.
	• Define logarithm with base a.
	• Solve examples of derivatives and integrals involving logarithm with a
	base. 7 Transcendental Functions
TOPIC (S)	

7.1 Inverse Functions and Their Derivatives 7.2 Natural Logarithms 7.3 Exponential Functions LEARNING ACTIVITIES Discuss the simplicity causing by using logarithms while calculating some integrals and derivatives. Discuss the simplicity causing by using logarithms while calculating some integrals and derivatives. OUT OF CLASS WORK ASSIGNMENT Doing Homework: Read Chapter 7 and be ready to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2013 Pearson Education) Doing Homework VI DATE SPECIFIC OBJECTIVES Calculate the limit of the functions with 0/0, ∞/∞, 0, ∞, and ∞-∞ as indeterminate form. Calculate the limit of the functions with indeterminate powers. Explain the Cauchy's Mcan Value Theorem. Define the hyperbolic functions. Define the hyperbolic functions. Define the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Obtain the derivatives and integrals of the hyperbolic functions. Obtain the derivatives and integrals of the hyperbolic functions. Obtain the derivatives and integrals of the hyperbolic functions.		
7.3 Exponential Functions LEARNING ACTIVITIES Discuss how to find the inverse of a function. Discuss the simplicity causing by using logarithms while calculating some integrals and derivatives. Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF CLASS WORK ASSIGNMENT Homework: Read Chapter 7 and be ready to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE WORK ASSIGNMENT OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. • Explain indeterminate form. • Calculate the limit of the functions with 0/0, ∞/∞, 0,∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain indecauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Define the clauchy's Mean Value Theorem. • Define the hyperbolic functions. • Define the derivatives of the inverse trigonometric functions. • Define the hyperbolic functions. • Obtain derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals		7.1 Inverse Functions and Their Derivatives
LEARNING ACTIVITIES Discuss the simplicity causing by using logarithms while calculating some integrals and derivatives. Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF CLASS WORK Homework: Read Chapter 7 and be ready to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE WEEK 14 SPECIFIC OBJECTIVES • Explain indeterminate form 0/0 and L'Hospital's Rule. • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions. • Define the hyperbolic functions. • Define the hyperbolic functions and heir inverses. • Obtain the derivatives of the inverse trigonometric functions. • Obtain the derivatives of the inverse trigonometric functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions step by step by the aim of the studen		7.2 Natural Logarithms
ACTIVITIES Discuss the simplicity causing by using logarithms while calculating some integrals and derivatives. Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 and be ready to discuss in class. WURK WORK ASSIGNMENT Doing Homework VI DATE VEEK 14 SPECIFIC Explain indeterminate form 0/0 and L'Hospital's Rule. OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. Obtain derivatives of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. Obtain derivatives of the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions. Obtain derivatives of the inverse trigonometric functions. Define the hyperbolic functions. Calculate the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Calculate the Gord witerse hyperbolic functions. Define the derivatives of the inverse hyperbolic functions. Calculate the Gord witerse hyperbolic functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives of the inverse hyperbolic functions. <th></th> <th></th>		
integrals and derivatives. Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF CLASS Homework: Read Chapter 7 and be ready to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE Werk 14 SPECIFIC OBJECTIVES OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. • Explain indeterminate form 0/0 and L'Hospital's Rule. • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions. • Obtain some identities for hyperbolic functions. • Calculate the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Calculate the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions step by step by the aim of the students.	LEARNING	Discuss how to find the inverse of a function.
integrals and derivatives. Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF CLASS WORK 2015 Pearson Education) Dong Homework VI DATE SPECIFIC OBJECTIVES Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. Calculate the limit of the functions with indeterminate powers. Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Obtain some identities for hyperbolic functions. Obtain some identities for hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonomet	ACTIVITIES	Discuss the simplicity causing by using logarithms while calculating some
Discuss the relationship between logarithm and exponential functions. Completion of exercises and problems. OUT OF CLASS WORK Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE VEEK 14 SPECIFIC OBJECTIVES • Explain indeterminate form 0/0 and L'Hospital's Rule. • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions. • Define the hyperbolic functions. • Obtain derivatives of the inverse hyperbolic functions. • Obtain integrals leading to inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions 7.8 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions 7.8 Indeterminate Forms and L'Hôpital's Rule 7.9 Indeterminate Forms and Dyperbolic functions step by step by the aim of the students.		
Completion of exercises and problems. OUT OF CLASS WORK Homework: Read Chapter 7 and be ready to discuss in class. ASSIGNMENT Doing Homework VI DATE WEEK 14 SPECIFIC OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. BECTIVES Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form. Calculate the limit of the functions and explain their properties. Define the inverse trigonometric functions. Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions. Define the inverse trigonometric functions. Define the hyperbolic functions. Define the hyperbolic functions. Obtain derivatives of the inverse trigonometric functions. Define the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions LEARNING ACTIVTIES Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.		-
OUT OF CLASS WORK Homework: Read Chapter 7 and be ready to discuss in class. MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VI DATE WEEK 14 SPECIFIC OBJECTIVES • Explain indeterminate form 0/0 and L'Hospital's Rule. • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Define the hyperbolic functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Define the hyperbolic functions. • Calculate the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain some identities for hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Calculate the derivatives and integrals of the hyperbolic functions. • Define the supers ∞/∞ indeterminate form as 0/0 indeterminate form. Examinate form. • Descuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperboli		
CLASS WORK ASSIGNMENT MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE WEEK 14 SPECIFIC OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. SPECIFIC OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form Calculate the limit of the functions with indeterminate powers. Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions. Obtain derivatives of the inverse hyperbolic functions. Obtain some identities for hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions Out indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF CLASS Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII VEEK 1	OUT OF	
WORK ASSIGNMENT 2015 Pearson Education) Doing Homework VI DATE WEEK 14 SPECIFIC OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. SPECIFIC OBJECTIVES Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form C Calculate the limit of the functions with indeterminate powers. Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. C Calculate the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. ODE 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions. Completion of exercises and problems. Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 WLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
ASSIGNMENT Doing Homework VI DATE VVEK 14 SPECIFIC • Explain indeterminate form 0/0 and L'Hospital's Rule. OBJECTIVES • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Calculate the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain some identities for hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain some identities forms and L'Hôpital's Rule • Obtain the derivatives of the inverse hyperbolic functions. • Define the students. • Obtain the students. • Obtain the students. • Calculate the derivatives and problems. • Ometorw. • Evaluate Capyright 2015 Pearson Education) • Discuss how to express ∞/∞ indete		
DATE WEEK 14 SPECIFIC OBJECTIVES Explain indeterminate form 0/0 and L'Hospital's Rule. Evaluate the limit of the functions with 0/0, ∞/∞, 0,∞, and ∞-∞ as indeterminate form Calculate the limit of the functions with indeterminate powers. Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions.		Doing Homework VI
SPECIFIC • Explain indeterminate form 0/0 and L'Hospital's Rule. OBJECTIVES • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions. • Define the hyperbolic functions and explain their inverses. • Obtain some identities for hyperbolic functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Obtain some identities for hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions step by step by the aim of the students. • Completion of exercises and problems. OUT OF Homework: Read Chap		WEEK 14
OBJECTIVES • Evaluate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with 0/0, ∞/∞, 0.∞, and ∞-∞ as indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Define the hyperbolic functions and integrals of the hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions and integrals leading to inverse hyperbolic functions step by step by the aim of the students. • Calculate the students. • Completion of exercises and problems. • OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE VEEK 15 <th></th> <th></th>		
indeterminate form • Calculate the limit of the functions with indeterminate powers. • Explain the Cauchy's Mean Value Theorem. • Define the inverse trigonometric functions and explain their properties. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Calculate the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse trigonometric Functions • Obtain the derivatives and integrals of the hyperbolic functions. • Define the students. • Obtain the students. • Completion of exercises and problems. • OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) DATE • Final Exam		1 1
 Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. Momework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE VIVITIES Final Exam. Gutt OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) 	ODJECTIVES	
 Explain the Cauchy's Mean Value Theorem. Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. Momework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE VIVITIES Final Exam. Gutt OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) 		• Calculate the limit of the functions with indeterminate powers
 Define the inverse trigonometric functions and explain their properties. Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE Final Exam. GBJECTIVES OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2017 OF 		-
properties. • Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. • Define the hyperbolic functions and their inverses. • Obtain some identities for hyperbolic functions. • Obtain some identities for hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives of the inverse hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • Obtain the derivatives and integrals of the hyperbolic functions. • TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions • 7.7 Hyperbolic Functions • Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. • Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII • Final Exam. OBJECTIVES • Final Exam. TOPIC (S) • Final Exam. OUT OF WLEA (This course is based on		
 Obtain derivatives of the inverse trigonometric functions and integrals evaluated with inverse trigonometric functions. Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions. TOPIC (S) ILEARNING ACTIVITIES OUT OF CLASS WORK ASIGNMENT DATE VORK Parson Education) Doing Homework VII Doing Homework VII Doing Homework VII Final Exam. OBJECTIVES OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII State State		
evaluated with inverse trigonometric functions.• Define the hyperbolic functions and their inverses.• Obtain some identities for hyperbolic functions.• Obtain some identities for hyperbolic functions.• Obtain the derivatives and integrals of the hyperbolic functions.• Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. TOPIC (S)7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions 1.6 Inverse Trigonometric Functions7.7 Hyperbolic FunctionsDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORKOUT OF DATEDATESPECIFIC OBJECTIVESTOPIC (S)UEARNING ACTIVITIESOUT OF OUT OF OUT OF OBJECTIVESOUT OF OUT OF OUT OF OUT OF OBJECTIVESOUT OF OUT OF ODIT OF OBJECTIVESOUT OF OUT OF OUT OF OUT OF OBJECTIVESOUT OF OUT O		
 Define the hyperbolic functions and their inverses. Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions T.7 Hyperbolic Functions Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE Final Exam. OUT OF ILEARNING ACTIVITIES MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) 		
 Obtain some identities for hyperbolic functions. Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE Final Exam. OUT OF ILEARNING ACTIVITIES MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) 		
 Calculate the derivatives and integrals of the hyperbolic functions. Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE Final Exam. OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Motab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) 		
 Obtain the derivatives of the inverse hyperbolic functions and integrals leading to inverse hyperbolic functions. TOPIC (S) 7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems. OUT OF Homework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII DATE SPECIFIC OBJECTIVES TOPIC (S) LEARNING ACTIVITIES MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VII 		
integrals leading to inverse hyperbolic functions.TOPIC (S)7.5 Indeterminate Forms and L'Hôpital's Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic FunctionsLEARNING ACTIVITIESDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 		o v 1
TOPIC (S)7.5 Indeterminate Forms and L'Hôpital's Rule7.6 Inverse Trigonometric Functions7.7 Hyperbolic Functions7.7 Hyperbolic FunctionsLEARNING ACTIVITIESDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORKHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIISPECIFIC OBJECTIVES• Final Exam.OBJECTIVES• Final Exam.OUT OF ULEARNING ACTIVITIES• MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIODI• Mina Exam.OBJECTIVES• Final Exam.OUT OF• MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)OUT OF• MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)OUT OF• MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)		 Obtain the derivatives of the inverse hyperbolic functions and
7.6 Inverse Trigonometric Functions 7.7 Hyperbolic FunctionsLEARNING ACTIVITIESDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATE SPECIFIC OBJECTIVESWEEK 15 Final Exam.OUT OF OUT OF OUT OF DATEMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIOUT OF OUT OF OBJECTIVESMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIOUT OF OBJECTIVESMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)OUT OF OBJECTIVESMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education)OUT OF OUT OF OUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		integrals leading to inverse hyperbolic functions.
ILEARNING ACTIVITIESDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIISPECIFIC OBJECTIVESFinal Exam.OUT OF CLASS WORK ASSIGNMENTMultiple Course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIOUT OF OBJECTIVESMultiple Course is based on Thomas' Calculus Global Edition, 13e CopyrightOBJECTIVES OBJECTIVESMultiple Course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OF MULAD (This course is based on Thomas' Calculus Global Edition, 13e Copyright	TOPIC (S)	7.5 Indeterminate Forms and L'Hôpital's Rule
LEARNING ACTIVITIESDiscuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form. Evaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATE SPECIFIC OBJECTIVESWEEK 15TOPIC (S) LEARNING ACTIVITIESFinal Exam.OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		7.6 Inverse Trigonometric Functions
ACTIVITIESEvaluate derivatives and integrals of the hyperbolic functions step by step by the aim of the students. Completion of exercises and problems.OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEWEEK 15SPECIFIC OBJECTIVES• Final Exam.TOPIC (S)Image: Completion of the students is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		•
the aim of the students.Completion of exercises and problems.OUT OF CLASS WORKHomework: Read Chapter 7MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEDoing Homework VIISPECIFIC OBJECTIVES• Final Exam.TOPIC (S)ILEARNING ACTIVITIESIMyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright	LEARNING	Discuss how to express ∞/∞ indeterminate form as 0/0 indeterminate form.
the aim of the students.Completion of exercises and problems.OUT OF CLASS WORKHomework: Read Chapter 7MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEDoing Homework VIISPECIFIC OBJECTIVES• Final Exam.TOPIC (S)ILEARNING ACTIVITIESIMyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright	ACTIVITIES	Evaluate derivatives and integrals of the hyperbolic functions step by step by
OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEWEEK 15SPECIFIC OBJECTIVESFinal Exam.TOPIC (S) LEARNING ACTIVITIESMyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
OUT OF CLASS WORK ASSIGNMENTHomework: Read Chapter 7 MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEWEEK 15SPECIFIC OBJECTIVESFinal Exam.TOPIC (S) LEARNING ACTIVITIESMyLab (This course is based on Thomas' Calculus Global Edition, 13e CopyrightOUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		Completion of exercises and problems.
CLASS WORK ASSIGNMENTMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright 2015 Pearson Education) Doing Homework VIIDATEWEEK15SPECIFIC OBJECTIVESFinal Exam.ODITOF(S)Image: Comparison of the state of the st	OUT OF	
WORK ASSIGNMENT2015 Pearson Education) Doing Homework VIIDATEWEEK 15SPECIFIC OBJECTIVES• Final Exam.TOPIC (S)-LEARNING ACTIVITIES-OUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
ASSIGNMENTDoing Homework VIIDATEWEEK 15SPECIFIC OBJECTIVES• Final Exam.TOPIC (S)- LEARNING ACTIVITIES- OUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
DATE WEEK 15 SPECIFIC • Final Exam. OBJECTIVES • TOPIC (S) • LEARNING • ACTIVITIES • OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		Doing Homework VII
SPECIFIC OBJECTIVES• Final Exam.TOPIC (S)-LEARNING ACTIVITIES-OUT OFMyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		WEEK 15
OBJECTIVES TOPIC (S) LEARNING ACTIVITIES OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
TOPIC (S) LEARNING ACTIVITIES OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
ACTIVITIES OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright		
OUT OF MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright	LEARNING	
	ACTIVITIES	
2015 Pearson Education)	OUT OF	MyLab (This course is based on Thomas' Calculus Global Edition, 13e Copyright
		2015 Pearson Education)

CLASS	
WORK	
ASSIGNMENT	

Doing Homework VII

Instructional Methods

In developing methodological strategies, it is best to discuss them between teachers and students in an environment of freedom and mutual agreement in order to ensure that the students make them their own and take responsibility for their execution and for attaining the goals of this course.

The following strategies may be used in this class:

- 1. A review of the literature.
- 2. Analysis of assigned readings.
- 3. Individual and group discussions.
- 4. Preparation of a didactic plan.
- 5. Preparation of lecture notes.

Instructional Materials and References

A Complete Course Calculus, 8th Edition. Robert A. Adams, Christopher Essex Pearson Canada Inc. ISBN 978: 0321781079

Assessment Criteria and Methods of Evaluating Students

Grade	Coefficient
АА	4.00
BA	3.50
BB	3.00
СВ	2.50
CC	2.00

DC	1.50
DD	1.00
FF	0.00
VF	0.00

Distribution of Grade Elements		
In-Term Studies	Quantity	Percentage
Midterm I	1	20
Midterm II	1	20
Homework	7	20
Total	9	60
End-Term Studies	Quantity	Percentage
End-Term Studies Final	Quantity 1	Percentage 40
Final	1	40
Final Total	1	40 40

Date Syllabus Was Last Reviewed: September 14, 2018