		Second Exam				July 25, 2018		
Your Name / Ad - Soyad	S	Signature / İmza	Problem	1	2	3	4	Total
	(75 min.)		Points:	24	25	27	24	100
Student ID # / Öğrenci No	(mavi tükenmez!)		Score:					
Time limit is 75		n your exam paper, you may use the n if your results are true- work will e				ow your.		
1. (a) (12 Points) Investigation	te the convergence or div	vergence of the series $\sum_{n=1}^{\infty}$	$\frac{n!}{(2n+1)!}.$					
• Converges.	• Diverges.	<i>n</i> -1	Test Us	sed:				
	Ì	$\frac{n!}{n+1} > 0 \text{ for each } n \ge 1$	1			HT		
ρ		$\frac{n+1)!}{n+3!!} \frac{(2n+1)!}{(n)!} = \lim_{n \to \infty} \frac{1}{(n)!}$	(2n+3)(2n+2)	(1)!n!	<u>12n-</u> t)! (r	<u>+1)!</u> ; <u>)</u> !		Justi your
	$=\lim_{n\to\infty}\frac{1}{4n}$	$\frac{1}{2+6} = \boxed{0 < 1}$						answ
The series converge	es by Ratio Test.							
р.72, рг.8								
 (b) (12 Points) Investigation • Converges. 	te the convergence or div • Diverges.	vergence of the series $\sum_{n=1}^{\infty}$	$\frac{n-1}{n^4+2}.$ Test Us	sed:			2	
• Converges.	• Diverges.	Vergence of the series $\sum_{n=1}^{\infty}$ h $\sum_{n=1}^{\infty} \frac{1}{n^3}$ which is a convergence	Test Us		= 3 > 1	. Let <i>a</i> _n	$n = \frac{n-1}{n^4+1}$	$\frac{1}{2} > 0$
• Converges. Solution: Use Dire	• Diverges. ect Comparison Test with $n \ge 1$, we have $n^4 \le 1$		Test Us ergent <i>p</i> -series		= 3 > 1	. Let <i>a</i> _n	$n = \frac{n-1}{n^4+1}$	$\frac{1}{2} > 0$ Justi your answ
• Converges. Solution: Use Directory for each $n \ge 1$. For	• Diverges. ect Comparison Test with $n \ge 1$, we have $n^4 \le 1$	h $\sum_{n=1}^{\infty} \frac{1}{n^3}$ which is a conver- $n^4 + 2 \Rightarrow \frac{1}{n^4} \ge \frac{1}{n^4 + 2} \Rightarrow \frac{1}{n^4 + 2} \Rightarrow \frac{1}{n^3} \ge \frac{n}{n^4 + 2} \ge \frac{n-1}{n^4 + 2}$	Test Us ergent <i>p</i> -series		= 3 > 1	. Let <i>a</i> _n	$n = \frac{n-1}{n^4+1}$	Justi your

Math 114 Summer 2018

Page 2 of 4

2. (a) (10 Points) Does the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{2^n}$ converge absolutely? Converge Conditionally? Or diverge? Justify your answer.

Test Used: _

Interval of Convergence:

Solution: Converges absolutely. Let $a_n = (-1)^{n+1} \frac{3}{2^n}$ for each $n \ge 1$. We have

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{3}{2^n} \right| = \sum_{n=1}^{\infty} \frac{3}{2^n} = \sum_{n=1}^{\infty} \frac{3}{2} \left(\frac{1}{2} \right)^{n-1} = \sum_{n=1}^{\infty} a r^{n-1}$$
$$\Rightarrow a = \frac{3}{2}, r = \frac{1}{2} \Rightarrow \boxed{|r| = \frac{1}{2} < 1}$$

Justify your answer.

This is a convergent geometric series because |r| < 1. p.72, pr.8

(b) (15 Points) Find the radius and interval of convergence of $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n}$. Radius of Convergence: _

Solution: Let
$$u_n = \frac{(3x-2)^n}{n}$$
. Then

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \Rightarrow \lim_{n \to \infty} \left| \frac{(3x-2)^{n+1}}{\frac{(3x-2)^n}{n}} \right| < 1 \Rightarrow \lim_{n \to \infty} \left| (3x-2) \frac{n+1}{n} \right| < 1 \Rightarrow |(3x-2)| \underbrace{\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)}_{=1} < 1$$

$$\Rightarrow |3x-2| < 1$$

$$\Rightarrow -1 < 3x - 2 < 1 \Rightarrow 1 < 3x < 3$$

$$\Rightarrow \frac{1}{3} < x < 1$$
When $x = \frac{1}{3}$, we have $\sum_{n=1}^{\infty} \frac{(3(\frac{1}{3}) - 2)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, a conditionally convergent series.
When $x = 1$, we have $\sum_{n=1}^{\infty} \frac{((3)(1) - 2)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$, a divergent series. So the radius of convergence is $R = 1$; the interval of convergence is $\frac{1}{3} \le x < 1$.

3. (a) (12 Points) Find the <u>Taylor series</u> generated by $f(x) = \ln x$ <u>about</u> a = 1. Use this to evaluate the limit $\lim_{x \to 1} \frac{\ln x}{x-1}$. (*Hint*: You may use the series $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^n}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, $-1 < x \le 1$)

Solution: By replacing *x* by
$$x - 1$$
 in the series for $\ln(1 + x)$, we have

$$\ln x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{3}(x-1)^3 - \dots + (-1)^{n-1}\frac{(x-1)^n}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1}\frac{(x-1)^n}{n}, \quad 0 < x \le 2$$

from which we find that

$$\frac{\ln x}{x-1} = 1 - \frac{1}{2}(x-1) + \frac{1}{3}(x-1)^2 - \frac{1}{3}(x-1)^2 - \dots + (-1)^{n-1}\frac{(x-1)^{n-1}}{n} + \dots = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{(x-1)^{n-1}}{n}, \ 0 < x \le 2.$$

Therefore, the limit is

$$\lim_{x \to 1} \frac{\ln x}{x-1} = \lim_{x \to 1} \left(1 - \frac{1}{2}(x-1) + \frac{1}{3}(x-1)^2 - \frac{1}{3}(x-1)^2 - \dots + (-1)^{n-1}\frac{(x-1)^{n-1}}{n} + \dots \right) = \boxed{1}$$

p.72, pr.8

(b) (15 Points) Using the series $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$, write the <u>first four nonzero terms</u> for the series

 $\sin(x^2) dx.$

Solution: From the series for $\sin x$,

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad -\infty < x < \infty$$

we substitute x^2 for x to obtain

$$\sin x^2 = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \dots + (-1)^n \frac{x^{4n+2}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)!}, \quad -\infty < x < \infty$$

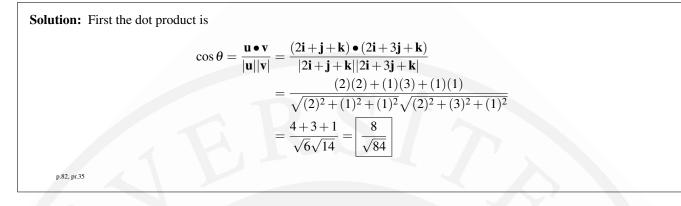
Therefore,

$$\int \sin(x^2) \, dx = \int \left(x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \dots + (-1)^n \frac{x^{4n+2}}{(2n+1)!} + \dots \right) \, dx$$
$$= \boxed{C + \frac{x^3}{3} - \frac{x^7}{7 \times 3!} + \frac{x^{11}}{11 \times 5!} - \frac{x^{15}}{15 \times 7!} + \dots}$$

p.83, pr.52

4. Given the vectors $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = -2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$.

(a) (12 Points) If the angle between **u** and **v** is θ , then find $\cos \theta$.



(b) (12 Points) Find the volume of the parallelepiped that is spanned by the vectors **u**, **v** and **w**.

Solution: We have $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = -2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} 2 & 1 & 1 \\ 2 & 3 & 1 \\ -2 & 4 & 1 \end{vmatrix}$ $= (2) \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} - (1) \begin{vmatrix} 2 & 1 \\ -2 & 1 \end{vmatrix} + (1) \begin{vmatrix} 2 & 3 \\ -2 & 4 \end{vmatrix}$ $= -2 - 4 + 14 = \boxed{8}$ Hence Volume = $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = 8$. $p_{688, pr48}$

