Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator Page 1 of 4

December 2, 2019 [4:00 pm-5:10 pm]	Math 113/ Second Exam	

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No				
Professor' s Name / Öğretim Üyesi	Your Department / Bölüm			
• Calculators, cell phones off and away!.				
• In order to receive credit, you must show all of your v do not indicate the way in which you solved a problem, little or no credit for it, even if your answer is correct.	you may get	Problem	Points	Score
work in evaluating any limits, derivatives.		1	40	
 Place a box around your answer to each question. Use a BLUE ball-point pen to fill the cover sheet. Please make sure 		2	35	
that your exam is complete.	se make sure	3	25	
• Time limit is 70 min.			100	
Do not write in the table to the right.		Total:	100	

1. (a) 15 Points Find the extreme value of the function V(x) = x(10-2x)(16-2x), models the volume of a box, on 0 < x < 5.

Solution: $\ln V(x) = 160x - 52x^2 + 4x^3$ $V'(x) = 160 - 104x + 12x^2 = 4(40 - 26x + 3x^2) = (3x - 20)(x - 2) = 0$ We find $x_1 = \frac{20}{3} \cong 6.6$ and $x_2 = 2$. Because 0 < x < 5 $x = x_2 = 2$. That is, the extreme value of V in (0,5) is x = 2.

(b) 10 Points Show that the function $g(t) = \sqrt{t} + \sqrt{1+t} - 4$ have exactly one **zero** in $(0, \infty)$.

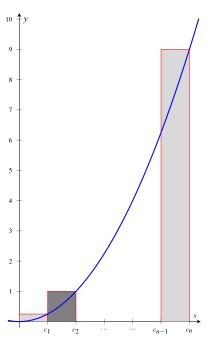
Solution: lr t=0 \Rightarrow $g(0) = \sqrt{0} + \sqrt{1} - 4 = -3$ $t \to \infty \Rightarrow g(t)|_{t\to\infty} = \lim_{t\to\infty} \sqrt{t} + \sqrt{1+t} - 4 = \infty$ By virtue of **mean value theorem**, the graph of the function g intersects the x-axis at least one point in $(0,\infty)$, because g(0) < 0 and $g(t)|_{t\to\infty} > 0$. That is, there is at least one root in this interval. Now let's make sure that the root is the unique in $(0, \infty)$. For this, we find the derivative of the function: $g'(t) = \frac{1}{2\sqrt{t}} + \frac{1}{2\sqrt{1+t}}$ This function is always positive(that is increasing) on $(0,\infty)$. Therefore, it is impossible to find an other root in this interval.

(c) 15 Points (Minimizing Perimeter:) What is the smallest perimeter possible for a rectangle whose area is $16cm^2$, and what are its dimensions?

Solution: Ir Area: A=xy $\Rightarrow y = \frac{16}{x}$ Perimeter : $P = 2(x+y) \Rightarrow \zeta(x) = 2(x+\frac{16}{x}) = \frac{2x^2+32}{x}$ $\zeta'(x) = \frac{x^2-16}{x^2} = 0 \Rightarrow Critical Points : x = \mp 4 and x = 0$

Because the length of the sides can not be zero0 the dimentions of the rectangle will be x = 4 and $y = \frac{16}{4} = 4$. So, the min value of the perimeter is P(x) = 2(4+4) = 16cm.

2. (a) 15 Points For the function $f(x) = x^2$, find a formula for the Riemann sum obtained by dividing the interval [0,3] into n equal subintervals and using the right hand point for each c_k . Then take a limit of these sums as $n \to \infty$ to calculate the area under the curve over [0,3].



Solution:
$[a,b] = [0,3], \qquad \triangle x = \frac{b-a}{n} = \frac{3}{n}$
$c_k = x_k = a - \triangle x = 0 + k\frac{3}{n}$
$S_n = \sum_{k=1}^n f(x_k) \triangle x$
$=\sum_{k=1}^{n} ((\frac{3k}{n})^2)\frac{3}{n}$
$=\frac{27}{n^3}\sum_{k=1}^n k^2$
$=\frac{27}{n^3}(\frac{n(n+1)(2n+1)}{6})$
$=rac{9(2n^3+3n+n)}{2n^3}$
Area = $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{9(2n^3 + 3n + n)}{n^3} = 9$

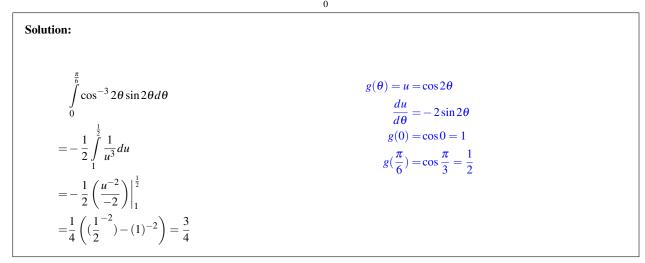
Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator

December 2, 2019 [4:00 pm-5:10 pm] Mat

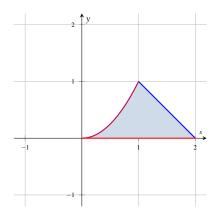
Math 113/ Second Exam

Page 3 of 4

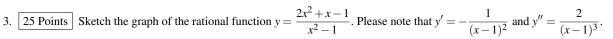
(b) 10 Points Use the substitution formula to evaluate the integral $\int_{-\infty}^{\infty} \cos^{-3} 2\theta \sin 2\theta d\theta$.

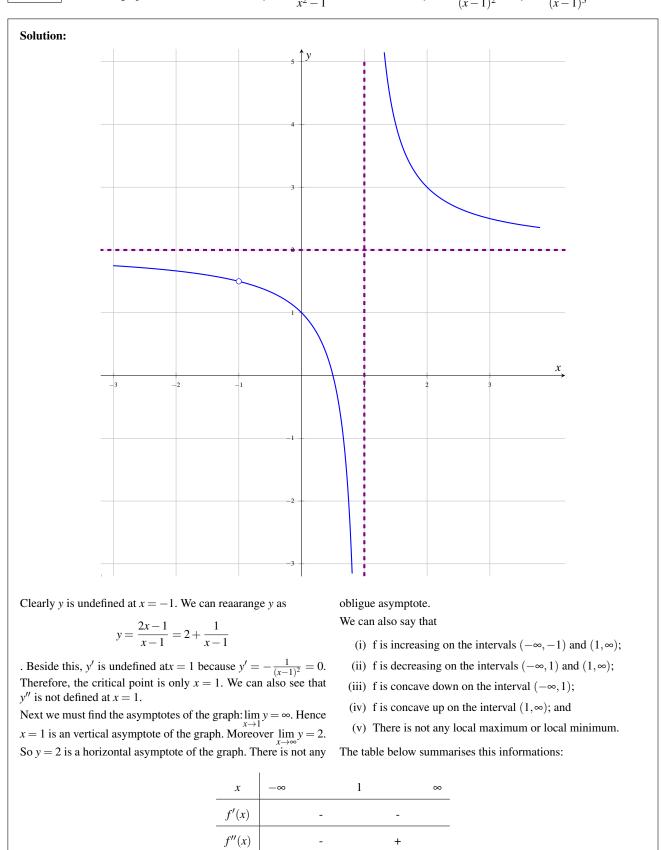


(c) 10 Points Find the area of the "triangular" region bounded on the left by x + y = 2, on the right by $y = x^2$, and below by y = 0 (x-axis).



Solution:
$y=2-x$ and $y=x^2$ intersect $y=x^2=2-x \Rightarrow (x-2)(x+1)=0$
$x = 2 \Rightarrow y = 1$
$A = \int_{0}^{1} x^{2} dx + \int_{1}^{2} (2 - x) dx = \frac{x^{3}}{3} \Big _{0}^{1} + (2x - \frac{x^{2}}{2}) \Big _{1}^{2}$ $= \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$





 $) \land$

f(x)