Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator Ju

une 6, 2018 [10:30 am-11:50 am] Math 114/ Re-take Exam -(- α -)	une 6, 2018 [10:30 am-11:50 am]	Math 114/ Re-take Exam -(-α-)
--	---------------------------------	-------------------------------

Page 1 of 4

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No				
Professor's Name / Öğretim Üyesi	Your Department / Bölüm			
• Calculators, cell phones off and away!.				
• In order to receive credit, you must show all of your v do not indicate the way in which you solved a problem, little or no credit for it, even if your answer is correct. work in evaluating any limits, derivatives .	vork. If you you may get Show your	Problem	Points 32	Score
• Place a box around your answer to each question.		2	25	
 Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete. Time limit is 80 min 		3	33	
Do not write in the table to the right.		Total:	100	

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorJune 6, 2018 [10:30 am-11:50 am]Math 114/ Re-take Exam -(- α -)Page 2 of 4

1. (a) 10 Points Use Lagrange Multipliers to find the maximum and minimum values of f(x, y, z) = x - 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.

Solution: $\nabla f = \mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ and $\nabla g = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$ so that $\nabla f = \lambda \nabla g$ implies $\mathbf{i} - 2\mathbf{j} + 5\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$.

If we equate the components, we get $1 = 2x\lambda$, $-2 = 2y\lambda$, and $5 = 2z\lambda$. So $x = \frac{1}{2\lambda} \Rightarrow y = -\frac{1}{2\lambda} = -2x$, $z = \frac{5}{2\lambda} = 5x$, $x^2 + (-2x)^2 + (5x)^2 = 30 \Rightarrow x = \pm 1$.

Thus x = 1, y = -2, z = 5 or x = -1, y = 2, z = -5.

Therefore f(1,-2,5) = 30 is the maximum value and f(-1,2,-5) = -30 is the minimum value.

p.867, pr.23

(b) 12 Points Find the *directional derivative* of f(x, y, z) = xy + yz + xz at $P_0(1, -1, 2)$ in the direction of $\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$.

Solution:

 $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{\sqrt{3^2 + 6^2 + (-2)^2}} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$ $f_x(x, y, z) = y + z \Rightarrow f_x(1, -1, 2) = 1$ $f_y(x, y, z) = x + z \Rightarrow f_y(1, -1, 2) = 3;$ $f_z(x, y, z) = y + x \Rightarrow f_z(1, -1, 2) = 0$ $\nabla f = \mathbf{i} + 3\mathbf{j}$ $\Rightarrow (D_{\mathbf{u}f})_{P_0} = \nabla f \bullet \mathbf{u} = (\mathbf{i} + 3\mathbf{j}) \bullet (\frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}) = \frac{3}{7} + \frac{18}{7} = \boxed{3}$ p.317.pc.33

(c) 10 Points Find the gradient and use it to find the equation of the line tangent to the curve $x^2 - xy + y^2 = 7$ at the point P(-1,2).

Solution: Let $f(x, y) = x^2 - xy + y^2 = 7$. Then $f_x(x, y) = 2x - y \Rightarrow f_x(-1, 2) = -4$ $f_y(x, y) = -x + 2y \Rightarrow f_y(-1, 2) = 5$ $\nabla f(-1, 2) = -4\mathbf{i} + 5\mathbf{j}$ \Rightarrow Tangent line : -4(x+1) + 5(y-2) = 0 $\Rightarrow \boxed{-4x + 5y - 14 = 0}$ p.840, pr.28

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorJune 6, 2018 [10:30 am-11:50 am]Math 114/ Re-take Exam -(-α-)Page 3 of 4

2. (a) 14 Points Find the distance from the point Q(1,2,1) to the line \mathscr{L} : $\begin{cases} x = 2 + 2t, \\ y = 1 + 6t, \\ z = 3 \end{cases}$

Solution: We shall use the distance formula $d = \frac{|\vec{PQ} \times \mathbf{v}|}{|\mathbf{v}|}$. Here (by letting t = 0) P(2,1,3) is a point on \mathscr{L} and $\mathbf{v} = 2\mathbf{i} + 6\mathbf{j} + 0\mathbf{k}$ is a vector that is parallel to \mathscr{L} . Now we have $\vec{PQ} = -\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and so

$$\vec{PQ} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & -2 \\ 2 & 6 & 0 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & -2 \\ 6 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -1 & -2 \\ 2 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -1 & 1 \\ 2 & 6 \end{vmatrix}$$

Therefore, we have

p.583, pr.17

o Converges.

$$d = \frac{|\vec{PQ} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{(12)^2 + (-4)^2 + (-8)^2}}{\sqrt{(2)^2 + (6)^2 + (0)^2}} = \frac{\sqrt{224}}{\sqrt{40}} = \boxed{\frac{2\sqrt{7}}{\sqrt{5}}}$$

(b) 11 Points Find the radius and interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$. Radius of Convergence:

Interval of Convergence:

Solution: Let
$$u_n = \frac{(x-1)^n}{\sqrt{n}}$$
. Then

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \Rightarrow \lim_{n \to \infty} \left| \frac{\frac{(x-1)^{n+1}}{\sqrt{n+1}}}{\frac{(x-1)^n}{\sqrt{n}}} \right| < 1 \Rightarrow \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{(x-1)^n} \right| < 1 \Rightarrow |x-1| \sqrt{\lim_{n \to \infty} \frac{n}{n+1}} < 1$$

$$\Rightarrow |x-1| < 1$$

$$\Rightarrow -1 < x - 1 < 1$$

$$\Rightarrow 0 < x < 2$$
When $x = 0$, we have $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/2}}$, a conditionally convergent series.
When $x = 2$, we have $\sum_{n=1}^{\infty} \frac{(2-1)^n}{n^{1/2}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$, a divergent series. So the radius of convergence is $R = 1$; the interval convergence is $0 \le x < 2$.

(c) 10 Points Investigate the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n+1}{n!}$

o Diverges.

Test Used:

Solution: Use Ratio Test. Let $u_n = \frac{n+1}{n!} > 0$. Then $\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\frac{n+2}{(n+1)!}}{\frac{n+1}{n!}} = \lim_{n \to \infty} \left[\frac{n+2}{(n+1)!} \frac{n!}{n+1} \right] = \lim_{n \to \infty} \frac{n+2}{(n+1)n!} \frac{n!}{n+1} = \lim_{n \to \infty} \frac{n+2}{(n+1)^2}$ $= \lim_{n \to \infty} \frac{\frac{1}{n} + \frac{2}{n^2}}{1 + \frac{2}{n} + \frac{1}{n^2}} = 0 < 1$ The series converges.

of

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorJune 6, 2018 [10:30 am-11:50 am]Math 114/ Re-take Exam -(- α -)Page 4 of 4

3. (a) 10 Points Evaluate the improper integral $\int_0^\infty \frac{dx}{x^2+1}$.

Solution: By the definition of Improper Integrals of Type I, we have

$$\int_0^\infty \frac{\mathrm{d}x}{x^2 + 1} = \lim_{b \to \infty} \int_0^b \frac{\mathrm{d}x}{x^2 + 1} = \lim_{b \to \infty} \int_0^b \frac{\mathrm{d}x}{x^2 + 1} = \lim_{b \to \infty} \left[\tan^{-1} x \right]_0^b = \lim_{b \to \infty} \left[\tan^{-1}(b) - \tan^{-1}(0) \right] = \lim_{b \to \infty} (\tan^{-1}(b)) = \frac{\pi}{2}$$

So the improper integral converges and has value $\pi/2$.

p.632, pr.13

(b) 10 Points Express the integrand as a sum of partial fractions and evaluate the integral $\int \frac{1}{(x^2-1)^2} dx$.

Solution: The appropriate decomposition is

$$\Rightarrow \frac{1}{(x^2 - 1)^2} = \frac{1}{((x + 1)(x - 1))^2} = \frac{1}{(x + 1)^2(x - 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2}$$
$$\Rightarrow (x + 1)^2(x - 1)^2 \left[\frac{1}{(x + 1)^2(x - 1)^2}\right] = (x + 1)^2(x - 1)^2 \left[\frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2}\right]$$

Clear the fractions:

$$1 = A(x+1)(x-1)^2 + B(x-1)^2 + C(x-1)(x+1)^2 + D(x+1)^2$$

Letting x = -1 gives $B = \frac{1}{4}$ and x = 1 gives $D = \frac{1}{4}$. To find A and C, we put x = 0 and x = 2. If we let x = 0, then we get 1 = A + B - C + D and for x = 2, we have 1 = 3A + B + 9C + 9D. So we have the system

$$\begin{array}{l} A+B-C+D=1\\ 3A+B+9C+9D=1\\ B=\frac{1}{4}, D=\frac{1}{4} \end{array} \Rightarrow \begin{cases} A+\frac{1}{4}-C+\frac{1}{4}=1\\ 3A+\frac{1}{4}+9C+\frac{9}{4}=1 \end{cases} \Rightarrow \begin{cases} A-C=\frac{1}{2}\\ 3A+9C=-\frac{3}{2} \end{cases} \Rightarrow \begin{cases} A=\frac{1}{4}\\ C=-\frac{1}{4} \end{cases}$$

Then the integral becomes

$$\int \frac{1}{\left(x^2 - 1\right)^2} dx = \int \left(\frac{1/4}{x + 1} + \frac{1/4}{(x + 1)^2} + \frac{-1/4}{x - 1} + \frac{1/4}{(x - 1)^2}\right) dx$$
$$= \frac{1}{4} \ln|x + 1| - \frac{1}{4} \frac{1}{x + 1} - \frac{1}{4} \ln|x - 1| - \frac{1}{4} \frac{1}{x - 1} = \boxed{\frac{1}{4} \ln\left|\frac{x + 1}{x - 1}\right| - \frac{1}{2} \frac{x}{x^2 - 1} + K}$$

p.468, pr.33

(c) 13 Points Evaluate the integral $\int_{0}^{\ln 2} \tanh(2x) dx$.

Solution: Let $u = \cosh(2x)$ and so $du = 2\sinh(2x) dx$. When x = 0, we have $u = \cosh(0) = 1$ and when $x = \ln 2$, we have

$$u = \cosh(2\ln 2) = \cosh(\ln 4) = \frac{e^{\ln 4} + e^{-\ln 4}}{2} = \frac{e^{\ln 4} + e^{\ln 4^{-1}}}{2} = \frac{4 + \frac{1}{4}}{2} = \frac{17}{8}$$

Therefore

$$\int_{0}^{\ln 2} \tanh(2x) \, dx = \int_{0}^{\ln 2} \frac{\sinh(2x)}{\cosh(2x)} \, dx = \frac{1}{2} \int_{0}^{\ln 2} \frac{1}{\cosh(2x)} 2\sinh(2x) \, dx = \frac{1}{2} \int_{1}^{\frac{17}{8}} \frac{1}{u} \, du$$
$$= \left[\frac{1}{2} \ln|u|\right]_{1}^{\frac{17}{8}}$$
$$= \frac{1}{2} \left[\ln\frac{17}{8} - \ln 1\right] = \left[\frac{1}{2}\ln\frac{17}{8}\right]$$

p.481, pr.28