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Answers without reasonable-even if your results are true- work will either get zero or very little credit.

1. (a) (10 Points) Evaluate the integral
∫ 8

4

ydy
y2−2y−3

.

Solution: By using partial fractions, we have

y
y2−2y−3

=
A

y−3
+

B
y+1

⇒ y = A(y+1)+B(y−3);y =−1⇒ B =
−1
−4

=
1
4

;y = 3⇒ A =
3
4

;

∫ 8

4

ydy
y2−2y−3

=
3
4

∫ 8

4

dy
y−3

+
1
4

∫ 8

4

dy
y+1

=

[
3
4

ln |y−3|+ 1
4

ln |y+1|
]8

4

=

(
3
4

ln5+
1
4

ln9
)
−
(

3
4

ln1+
1
4

ln5
)
=

1
2

ln5+
1
2

ln3 =
ln(15)

2

p.94, pr.34

(b) (8 Points) Assuming that the equation x2 + xy+ y2− 7 = 0 defines y as a differentiable function of x, find the value of
dy
dx

at

the point (1,2).

Solution: Let F(x,y) = x2 + xy+ y2−7 = 0. Then

Fx(x,y) = 2x+ y and Fy(x,y) = x+2y
dy
dx

=−Fx

Fy
=−2x+ y

x+2y

dy
dx

(1.2) = −4
5

p.94, pr.34

(c) (8 Points) Find ∂w/∂ r when r = 1 and s =−1, if w = (x+ y+ z)2, x = r− s, y = cos(r+ s), z = sin(r+ s).

Solution: By the Chain Rule formula,

∂w
∂ r

=
∂w
∂x

∂x
∂ r

+
∂w
∂y

∂y
∂ r

+
∂w
∂ z

∂ z
∂ r

= 2(x+ y+ z)(1)+2(x+ y+ z)(−sin(r+ s))+2(x+ y+ z)(cos(r+ s))

= 2(x+ y+ z)[1− sin(r+ s)+ cos(r+ s)]

= 2(r− s+ cos(r+ s)+ sin(r+ s))[1− sin(r+ s)+ cos(r+ s)]

=
∂w
∂ r

∣∣∣∣
r=1,s=−1

= (2)(3(2) = 12

p.94, pr.34
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2. (a) (11 Points) Find the absolute maxima and minima of f (x,y) = x2 + y2 on the closed
triangular plate bounded by the lines
x = 0, y = 0 and y+2x = 2.

1 2

1

2

B(1,0)

y = 2−2x

O(0,0)

A(0,2)

x

y

Solution: Let the vertices be A(0,2), B(1,0), O(0,0).

Along OA, f (x,y) = f (0,y) = y2 on 0≤ y≤ 2;
f ′(0,y) = 2y = 0⇒ y = 0 and x = 0;
f (0,0) = 0 and f (0,2) = 4 .

Along OB, f (x,y) = f (x,0) = x2 on 0≤ x≤ 1;
f ′(x,0) = 2x⇒ x = 0 and y = 0
f (0,0) = 0 and f (1,0) = 1 .

Along AB, f (x,y) = f (x,−2x+2) = 5x2−8x+4 on 0≤ x≤ 1;

f ′(x,−2x+2) = 16x−8 = 0⇒ x =
4
5

and y =
2
5

; f (
4
5
,

2
5
) =

4
5

;
endpoint values have been found above.

For interior points, fx(x,y) = 2x = 0 and fy(x,y) = 2y = 0⇒ x = 0
and y = 0 but (0,0) is not an interior point of the region. Therefore
the absolute maximum is 4 at (0,2) and the absolute minimum is 0 at (0,0).

p.192, pr.87

(b) (11 Points) Use Lagrange Multipliers to find the points on the surface z2− xy = 4 closest to the origin.

Solution: Let f (x,y,z) = x2 + y2 + z2 be the square of the distance to the origin. Then ∇ f = 2xi+ 2yj+ 2zk and ∇g =
−yi−xj+2zk so that ∇ f = λ∇g⇒ 2xi+2yj+2zk = λ (−yi−xj+2zk)⇒ 2x =−yλ , 2y =−xλ , and 2z = 2zλ ⇒ λ = 1
or z = 0.

CASE 1: λ = 1⇒ 2x =−y and 2y =−x⇒ y = 0 and x = 0⇒ z2−4 = 0⇒ z =±2 and x = y = 0.

CASE 2: z = 0⇒ −xy− 4 = 0⇒ y = −4
x

. Then 2x =
4
x

λ ⇒ λ =
x2

2
, and −8

x
= − x

λ
⇒ −8

x
= −x

(
x2

2

)
⇒ x4 =

16⇒ x =±2. Thus x = 2 and y =−2 or x =−2 and y = 2.
Therefore we get four points: (2,−2,0), (−2,2,0), (0,0,2). and (0,0,−2). But the points (0,0,2) and (0,0,−2) are
closest to the origin since they are 2 units away and the others are 2

√
2 units away.

p.82, pr.35
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3. (a) (10 Points) Use vectors to find the area of the triangle with vertices A(−5,3), B(1,−2), C(6,−2).

Solution: We first form the vectors

~AB = 6i−5j ~AC = 11i−5j

~AB× ~AC =

∣∣∣∣∣∣
i j k
6 −5 0

11 −5 0

∣∣∣∣∣∣=
∣∣∣∣−5 0
−5 0

∣∣∣∣ i− ∣∣∣∣ 6 0
11 0

∣∣∣∣ j+ ∣∣∣∣ 6 −5
11 −5

∣∣∣∣k
= 25k

Hence area =
1
2
| ~AB× ~AC|= 1

2
|25k =

25
2

p.95, pr.68

(b) (7 Points) Write the equation for the plane through (1,−1−3) and parallel to the plane 3x+ y+ z = 7.

Solution: The plane has equation

3(x−1)+(1)(y+1)+(1)(z+3) = 0⇒ 3x+ y+ z = 5

p.112, pr.26

(c) (8 Points) Find point of intersection of the line x = 1− t, y = 3t, z = 1+ t and the plane 2x− y+3z = 6.

Solution: Substitute the equations for the line into the equation for the plane

2x− y+3z = 6⇒ 2(1− t)− (3t)+3(1+ t) = 6⇒−2t +5 = 6⇒ t =−1
2
⇒ x =−3

2
,y =

3
2
,z =

1
2

Therefore
(
−3

2
,

3
2
,

1
2

)
is the point of intersection.

p.112, pr.26
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4. (a) (10 Points) Find equations for the (a) tangent plane and (b) normal line at the point
P0(1,−1,3) on the surface x2 +2xy− y2 + z2 = 7.

Solution: First find the gradient.

(a) ∇ f (x,y,z) (a) = (2x+2y)i+(2x−2y)j+(2x)k⇒ ∇ f (1,−1,3) = 4j+6k

⇒ Tangent Plane :4(y+1)+6(z−3) = 0⇒ 4y+6z = 14⇒ 2y+3z = 7

(b) Normal Line : x = 1, y =−1+4t, z = 3+6t

p.112, pr.26

(b) (8 Points) Use the Limit Comparison Test to investigate the convergence of
∞

∑
n=1

n−2
n3−n2 +3

.

◦ Converges. ◦ Diverges. Test Used:

Solution: Compare with
∞

∑
n=1

1
n2 which is a convergent p-series since p = 2 > 1. Both series have positive terms for n≥ 1.

lim
n→∞

an

bn
= lim

n→∞

n−2
n3−n2+3

1
n2

= lim
n→∞

n3−2n2

n3−n2 +3
= lim

n→∞

3n2−4n
3n2−2n

= lim
n→∞

6n−4
6n−2

= lim
n→∞

6n
6n

= 1 > 0.

Then by Limit Comparison Test,
∞

∑
n=1

n−2
n3−n2 +3

converges.

p.72, pr.8

(c) (9 Points) Find the first four nonzero terms in the Maclaurin series for the function y = ex sinx.

Solution: We know that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · ·

and

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

Hence

ex sinx =
(

1+ x+
x2

2!
+

x3

3!
+ · · ·

)(
x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= x+ x2 +

1
3

x3− 1
30

x5−·· ·

p.83, pr.52
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