Your Name / Adınız - Soyadınız Your Signature / İmz	za		
tudent ID # / Öğrenci No			
Professor's Name / Öğretim Üyesi Your Department / E	Bölüm		
• In order to receive credit, you must show all of your work. If you	Problem	Points	Score
do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your	1	24	
 Place a box around your answer to each question. 	2	27	\square
• Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete	3	27	
• Time limit is 70 min.	4	22	
not write in the table to the right.	Total:	100	
(a) 12 Points Does the series $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{2^n}$ converge absolutely, conditionally,	or diverge? Justify	vour ansy	wer.
• Converges absolutely. • Converges conditionally. • Div	verges.	Test	Used:
Solution: This is an alternating series of the form $\sum_{n=1}^{\infty} (-1)^n u_n$ where $u_n =$	$=\frac{2^n}{n^2}$. Then since		
• $\lim_{n \to \infty} \frac{2^n}{n^2} = \infty \Rightarrow \lim_{n \to \infty} (-1)^n \frac{2^n}{n^2} = \text{ does not exist,}$			
the series diverges by <i>n</i> th Term Test. p.573, pr.36			
(b) 12 Points Find the radius and interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 3n}$.			
Radius of Convergence:	Interval of Conve	rgence:	
Solution: Let $u_n = \frac{(x-1)^n}{x^3 2^n}$. Then			
$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right < 1 \Rightarrow \lim_{n \to \infty} \left \frac{\frac{(x-1)^{n+1}}{(n+1)^{3}3^{n+1}\sqrt{n+1}}}{\frac{(x-1)^n}{n^33^n}} \right < 1 \Rightarrow \lim_{n \to \infty} \left \frac{(x-1)^{n+1}}{(n+1)^33^{n+1}} \right $	$\left \frac{n^3 3^n}{(x-1)^n}\right < 1 \Rightarrow$	$ x-1 \lim_{n \to \infty}$	$\int_{\infty}^{n} \left(\frac{n^2}{3(n+1)} \right)^{n} dx$
$\Rightarrow \frac{1}{3} x-1 < 1$ $\Rightarrow -3 < x - 1 < 3$ $\Rightarrow -2 < x < 4$			
When $x = -2$, we have $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^2 3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$, a absolutely convergent s	series.		
When $x = 4$, we have $\sum_{n=1}^{\infty} \frac{(3)^n}{n^2 3^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$, a convergent series. So the radius	of convergence is R	2 = 3; the i	interval o
is -2 < x < 2.			

2. (a) 12 Points Find the center and radius *r* for the sphere $x^2 + y^2 + z^2 - 6y + 8z = 0$.

Solution: We complete the squares:

$$x^{2} + y^{2} + z^{2} - 6y + 8z = 0 \Rightarrow x^{2} + (y^{2} - 6y + 9) + (z^{2} + 8z + 16) = 9 + 16$$
$$\Rightarrow x^{2} + (y - 3)^{2} + (z + 4)^{2} = 25$$

Hence the center is at (0, 3, -4) and the radius is 5. p.491, pr.86

(b) 15 Points Write the inequalities to describe the half-space consisting of the points on and below the *xy*-plane.

Solution: The inequality is $z \le 0$.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorDecember 4, 2019 [4:00 pm-5:10 pm]Math 114/ Second ExamPage 3 of 4

3. (a) 14 Points Find $\cos \theta$ if θ is the angle between the vectors $\mathbf{u} = \mathbf{i} + \sqrt{2}\mathbf{j} - \sqrt{2}\mathbf{k}$ and $\mathbf{v} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$.

Solution: We have

$$\cos \theta = \frac{\mathbf{u} \bullet \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{(1)(-1) + (\sqrt{2})(1) + (-\sqrt{2})(1)}{\sqrt{(1)^2 + (\sqrt{2})^2 + (-\sqrt{2})^2}\sqrt{(-1)^2 + (1)^2 + (1)^2}} = \frac{-1}{\sqrt{5}\sqrt{3}} = -\frac{1}{\sqrt{15}}$$
p.583, pr.17

(b)	b) 13 Points Find the area of the triangle $\triangle(KLM)$ determined by the points $K(1,1,1)$, $L(2,1,3)$, and $M(3,-1,1)$.				
	Solution: We have $\vec{KL} = (2-1)\mathbf{i} + (1-1)\mathbf{j} + (3-1)\mathbf{k} = \mathbf{i} + 0\mathbf{j} + 2\mathbf{k}$ and $\vec{KM} = (3-1)\mathbf{i} + (-1-1)\mathbf{j} + (1-1)\mathbf{k} = 2\mathbf{i} - 2\mathbf{j} + 0\mathbf{k}$. Hence				
	$\vec{KL} \times \vec{KM} = \langle 1, 0, 2 \rangle \times \langle 2, -2, 0 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2 \\ 2 & -2 & 0 \end{vmatrix}$				
	$= \begin{vmatrix} 0 & 2 \\ -2 & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 0 \\ 2 & -2 \end{vmatrix} \mathbf{k}$				
	$= 4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$				
	\Rightarrow Area $=\frac{1}{2} \vec{KL} \times \vec{KM} = \frac{1}{2}\sqrt{16+16+4} = 3$				
	p.94, pr.34				

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorDecember 4, 2019 [4:00 pm-5:10 pm]Math 114/ Second ExamPage 4 of 4

4. (a) 12 Points Parametrize the line segment joining the points P(1,0,-1) and Q(0,3,0).

Solution: The direction $\vec{PQ} = (0-1)\mathbf{i} + (3-0)\mathbf{j} + (0+1)\mathbf{k} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and using P(1,0,-1), we have $L: \begin{cases} x = 1-t, \\ y = 0+3t, & 0 \le t \le 1 \\ z = -1+t. \end{cases}$

(b) 10 Points Find an equation of the plane through the points P(1, -1, 2), Q(2, 1, 3), and R(-1, 2, -1).

Solution: First find a vector normal to the plane. $\mathbf{n} = \vec{PQ} \times \vec{PR} = \langle 1, 2, 1 \rangle \times \langle -2, 3, -3 \rangle$ $= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ -2 & 3 & -3 \end{vmatrix}$ $= \begin{vmatrix} 2 & 1 \\ 3 & -3 \end{vmatrix} \left| \mathbf{i} - \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} \left| \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \left| \mathbf{k} \right|$ $= -9\mathbf{i} + \mathbf{j} + 7\mathbf{k}$

Hence the plane has equation

$$(-9\mathbf{i} + \mathbf{j} + 7\mathbf{k}) \bullet ((x-1)\mathbf{i} + (y+1)\mathbf{j} + (z-2)\mathbf{k}) = 0$$

$$\Rightarrow -9(x-1) + (y+1) + 7(z-2) = 0$$

$$\Rightarrow \boxed{-9x + y + 7z = 4}$$

p.687, pr.17(a)

