
MATH 216 MATHEMATICS IV
Homework 3 (�rst eight problems)

A. Find the Laplace transformation of the following functions:

1. f(t) = e�2t.

Solution : Note that
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2. f(t) =
p
t+ 3t2.

Solution : Recall that multiplying x(t) by tn in t� domain is equivalent
to taking the nth derivative in s � domain and multtiplying with (�1)n.
Consequently, we get
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For the �rst term, we have
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3. f(t) = cos2 2t.

Solution : Note that cos2 2t = 1
2 (1 + cos 4t) which implies that
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4. f(t) = t cos t+ tet.

Solution : Since multiplication by t is equivalent to taking derivative
with respect to s and multiplying by �1, it follows that
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5. f(t) = sinh t
t .

Solution : Since L (sinh t) = L
�
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�
, it follows that L (sinh t) is the
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6. f(t) = t2 cos 2t.

Solution : Using the derivative in s-domain, we get
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7. f(t) = e3t�1
t :

Solution : Note that
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8. f(t) = te�t sin2 t.
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Solution : Recall that sin2 t = 1
2 (1� cos 2t). This implies that
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