ÇANKAYA UNIVERSITY DEPARTMENT OF MATHEMATICS February 20, 2006

Math 352 Complex Calculus II Worksheet 1

Problems

Evaluate the following integrals, where C is the circle $\left|z\right|=5$ in the positive sense

1.

$$\int_{\mathcal{C}} \frac{\sin z}{(z^2 - 1)(z + 10)} \ dz$$

2.

$$\int_{\mathcal{C}} \frac{e^{\frac{1}{z}} \left(4z^3 - 3\right)}{z \left(z^3 + 1\right)} \ dz$$

3.

$$\int_{\mathcal{C}} \frac{z+2}{e^{2z}-1} \ dz$$

Use residues and contours to evaluate the following improper integral

4.

$$\int_{1}^{\infty} \frac{1}{(x^2+1)(x^2+4)} \ dz$$

Compute the Cauchy Principal Value for the following integral.

5.

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+4)} \ dz$$

Find the Taylor series of the given function, about the given point z_0 .

(a)

$$f(z) = e^z, \ z_0 = \frac{i\pi}{2}$$

(b)

$$\mathbf{f}\left(z\right)\!=\!\!\frac{z}{4+z^{2}},\mathbf{z}_{0}\!=\mathbf{0}$$

(a) Find the Laurent series which represents

$$f(z) = z \sin\left(\frac{1}{z^2}\right)$$

in the region $0 < |z| < \infty$.

(b) Evaluate the following integral

$$\int_C z \sin\left(\frac{1}{z^2}\right) dz$$

6. Evaluate the integral

$$\int_C \frac{ze^{\frac{1}{z}}}{1-z}dz$$

where C is the circle of radius 2, center 0, positively oriented.

7. Find the residue at z=0 for the following function

$$f\left(z\right) = \frac{1}{z^2 \left(3 - z\right)}$$

Use this residue to evaluate

$$\int_C \frac{1}{z^2 (3-z)} dz$$

where C is the circle of radius 2, center 0, positively oriented.

8. Show that

$$\mathbf{I} = \int_0^\infty \frac{x^6}{(a^4 + x^4)^2} dx = \frac{3\sqrt{2}}{16a}$$

where a is real and positive.

9. For a real and positive show that

$$\mathbf{I}_{1} = \int_{0}^{\infty} \frac{(1+x^{2})\cos ax}{1+x^{2}+x^{4}} dx = \frac{\pi}{\sqrt{3}} \exp\left(-\sqrt{3}a/2\right) \cos\left(a/2\right)$$

and

$$\mathbf{I}_{2} = \int_{0}^{\infty} \frac{x \sin ax}{1 + x^{2} + x^{4}} dx = \frac{\pi}{\sqrt{3}} \exp\left(-\sqrt{3}a/2\right) \sin\left(a/2\right)$$

Hint: Do both parts together. Note that

$$\mathbf{I}_{1} = \frac{1}{2} \int_{0}^{\infty} \left[g\left(x\right) + g\left(-x\right) \right] \cos ax dx = \int_{-\infty}^{\infty} g\left(x\right) \cos ax dx$$

and similarly

$$\mathbf{I}_{2} = \int_{-\infty}^{\infty} g\left(x\right) \sin ax dx$$

where

$$g\left(x\right) = \frac{1}{1 - x + x^2}$$

Consider therefore

$$\mathbf{J} = \int_{C} g\left(z\right) e^{iaz} dz$$

on an appropriate contour.

10. Find the circle of convergence of the following series:

- (a) $\sum_{k=1}^{\infty} \mathsf{k}^k \mathsf{z}^k$ (b) $\sum_{k=1}^{\infty} \frac{k!}{k^k} \mathsf{z}^k$
- (c) $\sum_{k=1}^{\infty} (z+5i) \frac{k!}{k^k} z^k$
- 11. Sum the series

$$1 + \cos\theta + \frac{\cos 2\theta}{2!} + \frac{\cos 3\theta}{3!} + \cdots$$

for any real number θ . What if θ is complex?

12. Expand the function

$$e^{\sin z}$$

in a Taylor series about z=0 up tp and including the term with z^5 ...

13. Let C be the quadrilateral with vertices ± 3 , $\pm i$ traversed counterclockwise. Compute

$$\int_C e^{2/z} dz$$

by developing the integrand into a Laurent series.

- 14. Let $f(z) = (z^2 + 1)^{-3}$.
 - (a) Find all singularities of f(z). Find the order of each pole.
 - (b) Find the residue of f(z) at each isolated singularity.
 - (c) Evaluate

$$\int_{C} f(z) dz,$$

where ${\cal C}$ is the circle |z-i|=1 with clockwise orientation.

15. Let

$$f(z) = \frac{z^2 (z - \pi)}{\sin^2 z}$$

- (a) Find all singularities of f(z). Find the order of each pole.
- (b) Find the residue of f(z) at each isolated singularity.
- (c) Evaluate

$$\int_{C} f(z) dz,$$

where C is the rectangular contour with vertices $-4 \pm 2i$, and $1 \pm 2i$ with counterclockwise orientation.

16. Compute

$$\int_{-\infty}^{\infty} \frac{dx}{\left(x^2+1\right)^2 \left(x^2+4\right)}$$

17. Compute

$$\int_{-\infty}^{\infty} \frac{x dx}{\left(x^2 + 9\right)^2}$$

18. Compute

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 16\right)^2}$$

19. Find al the Laurent series for

$$f\left(z\right) = \frac{1}{z^2 - 1}$$

expanded about $z_0=1$ and describe the domain of convergence for each series.

20. Consider the mapping

$$w = f(z) = \frac{\sin(\pi z)}{\sin(\pi/z)}$$

- (a) Classify all singular points of it.
- (b) Consider the positively oriented contour $C:|z-2|=\frac{11}{10}.\mathsf{Compute}$

$$\int_{C}f\left(z\right) dz.$$

21. Find the order of the pole at 0 of the function

$$f(z) = \frac{1}{(e^{-z^2} - 1 + z^2)^2}$$

22. Find and classify all singular points of

$$h(z) = \frac{1}{\sin z} - \frac{1}{z} + \frac{1}{z - \pi} + \frac{1}{z + \pi}$$

23. Evaluate

$$\int_{|z|=3} e^{1/z} \cos \frac{1}{z} dz$$

24. Find the residue at z = 0 of

$$f(z) = \frac{e^z}{\cos z - 1}$$

25. Find and classify all isolated singularities of

$$f(z) = \sin\left(\frac{z}{z+1}\right)$$

26. Obtain all Laurent expansions of

$$f(z) = z^{-1} + (z-1)^{-2} + (z+2)^{-1}$$

about z=0 and indicate where each is valid.

27. Find the first few terms in the Laurent expansion of

$$\frac{1}{z^2 \left(e^z - e^{-z}\right)}$$

valid for $0 < |z| < \pi$.

28. Obtain three different Laurent expansion of

$$\frac{7z-2}{z\left(z+1\right)\left(z-2\right)}$$

about z = -1.