Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator M Page 1 of 4

Iay 10, 2018 [11:00 am-12:20 pm]	Math 114/ Final Exam -(- α -)

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No				
Professor's Name / Öğretim Üyesi	Your Department / Bölüm	7		
• Calculators, cell phones off and away!.			$\langle \rangle$	
• In order to receive credit, you must show all of your work . If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating any limits, derivatives .		Problem	Points 32	Score
 Place a box around your answer to each question. Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete. Time limit is 80 min. 		2	35	
		3	33	N.
Do not write in the table to the right.		Total:	100	

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorMay 10, 2018 [11:00 am-12:20 pm]Math 114/ Final Exam -(-α-)Page 2 of 4

1. (a) 10 Points Use Lagrange Multipliers to find the *minimum distance* from the surface $x^2 - y^2 - z^2 = 1$ to the origin (the point O(0,0,0)).

Solution: Let $f(x, y, z) = x^2 + y^2 + z^2$ be the square of the distance from the origin.

Then $\nabla f = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$ and $\nabla g = 2x\mathbf{i} - 2y\mathbf{j} - 2z\mathbf{k}$ so that $\nabla f = \lambda \nabla g$ implies $2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} - 2y\mathbf{j} - 2z\mathbf{k})$.

If we equate the components, we get $2x = 2x\lambda$, $2y = -2y\lambda$, and $2z = -2z\lambda$. So x = 0 or $\lambda = 1$.

CASE I:
$$\lambda = 1 \Rightarrow 2y = -2y \Rightarrow y = 0$$
; $2z = -2z \Rightarrow z = 0$; $\Rightarrow x^2 - 1 = 0$; $\Rightarrow x = \pm 1$;
and $y = z = 0$

CASE II: $x = 0 \Rightarrow -y^2 - z^2 = 1$ which has no solution.

Therefore the points $(\pm 1, 0, 0)$ on the surface $x^2 - y^2 - z^2 = 1$ are closest to the origin. The minimum distance is 1. _{p.726, pr.5(d)}

(b) 12 Points Find the *absolute maximum and minimum* values of $f(x,y) = 2x^2 - 4x + y^2 - 4y + 1$ on the closed triangular plate R bounded by the lines x = 0, y = 2, y = 2x.

Solution:

• On OA, we have $f(x,y) = f(0,y) = y^2 - 4y + 1$ for $0 \le y \le 2$. So $f'(0,y) = 2y - 4 = 0 \Rightarrow y = 2$ and $x = 0 \Rightarrow (0,2)$ So f(0,0) = 1 and f(0,2) = -3.

• On AB, we have $f(x,y) = f(x,2) = 2x^2 - 4x - 3$ for $0 \le x \le 1$. So $f'(x,2) = 4x - 4 = 0 \Rightarrow x = 1$. f(0,2) = -3 and f(1,2) = -5.

• On OB, we have $f(x,y) = f(x,2x) = 6x^2 - 12x + 1$ for $0 \le x \le 1$; endpoint values have been found above; $f'(x,2x) = 12x - 12 = 0 \Rightarrow x = 1$ and $y = 2 \Rightarrow (1,2)$ is not an interior point of OB.

• Interior Points of this triangular region R: $f_x(x,y) = 4x - 4 = 0 \Rightarrow x = 1$ and $f_y(x,y) = 2y - 4 = 0 \Rightarrow y = 2 \Rightarrow (1,2)$ is not an interior point of *R*.

• Therefore the absolute maximum is 1 at (0,0) and the absolute minimum is -5 at (1,2), _{p,317, pr.33}

(c) 10 Points Find an equation of the plane that is tangent to the surface $z = e^{-(x^2+y^2)}$ at the point (0,0,1).

Solution: $f_x(x,y) = -2xe^{-(x^2+y^2)}$ and $f_y(x,y) = -2ye^{-(x^2+y^2)}$. So $f_x(0,0) = 0$ and $f_y(0,0) = 0$. A normal vector is $\mathbf{n} = \langle 0, 0, -1 \rangle$ and the tangent plane has equation $0(x-0) + 0(y-0) - (z-1) = 0 \Rightarrow \boxed{z=1}_{p.847, pr.10}$

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorMay 10, 2018 [11:00 am-12:20 pm]Math 114/ Final Exam -(-α-)Page 3 of 4

2. (a) 14 Points Find the point of intersection for the lines and find a vector orthogonal to both lines. $\begin{cases} L1: x = -1 + t, y = 2 + t, z = 1 - t - \infty < x \\ L2: x = 1 - 4s, y = 1 + 2s, z = 2 - 2s - \infty \end{cases}$

Solution: To find the point of intersection we equate the *x*- and *y*- coordinates of these lines.

$$\begin{cases} x = -1 + t = 1 - 4s \\ y = 1 + 2s = 2 + t \end{cases} \Rightarrow \begin{cases} 4s + t = 2 \\ -2s + t = -1 \end{cases} \Rightarrow \begin{cases} s = 1/2 \\ t = 0 \end{cases} \Rightarrow \begin{cases} x = -1 \\ y = 2 \\ z = 1 \end{cases}$$

Therefore $L1 \cap L2 = \{(-1,2,1)\}$. Next the cross product of $\mathbf{v_1} = \mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{v_2} = -4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ has the same direction as the normal to both lines.

$$\mathbf{n} = \vec{PQ} \times \vec{PR} = \langle 1, 1, -1 \rangle \times \langle -4, 2, -2 \rangle$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ -4 & 2 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -4 & -2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 1 \\ -4 & 2 \end{vmatrix}$$

$$= \boxed{\mathbf{6j} + \mathbf{6k}}$$
741, pc29

(b) 11 Points Find the volume of the parallelepiped if four of its vertices are A(0,0,0), B(1,2,0), C(0,-3,2), and D(3,-4,5).

Solution:
$$\vec{AB} = \mathbf{i} + 2\mathbf{j}, \vec{AC} = -3\mathbf{j} + 2\mathbf{k}, \text{ and } \vec{AD} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k},$$

 $\left(\vec{AB} \times \vec{AC}\right) \bullet \vec{AD} = \vec{PQ} \times \vec{PR} = \langle 1, 2, 1 \rangle \times \langle -2, 3, -3 \rangle$
 $= \begin{vmatrix} 1 & 2 & 0 \\ 0 & -3 & 2 \\ 3 & -4 & 5 \end{vmatrix}$
 $= \begin{vmatrix} -3 & 2 \\ -4 & 5 \end{vmatrix} - 2 \begin{vmatrix} 0 & 2 \\ 3 & 5 \end{vmatrix} + 0 \begin{vmatrix} 0 & 2 \\ 3 & 5 \end{vmatrix}$
 $= -15 + 8 + 12$
 $= \boxed{5}$
Volume is now equal to $|(\vec{AB} \times \vec{AC}) \bullet \vec{AD}| = 5.$

(c) 10 Points Use Integral Test to determine if the series $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ converges or diverges. Be sure to check the conditions of the Integral Test are satisfied.

Solution: The function $f(x) = \frac{\ln x}{x}$ is positive, continuous, and decreasing for $x \ge 3$ so integral test applies. $\int_{2}^{\infty} \frac{\ln x}{x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x}{x} dx = \lim_{b \to \infty} \int_{\ln 2}^{\ln b} u du = \lim_{b \to \infty} \left[\frac{1}{2} u^{2} \right]_{\ln 2}^{\ln b} = \lim_{b \to \infty} \left[\frac{1}{2} (\ln b)^{2} - \frac{1}{2} (\ln 2)^{2} \right] = \infty - \frac{1}{2} (\ln 2)^{2} = \infty$ Therefore, the integral $\int_{2}^{\infty} \frac{\ln x}{x} dx$ diverges. This shows by the Integral Test, the series $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ diverges.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorMay 10, 2018 [11:00 am-12:20 pm]Math 114/ Final Exam -(-α-)Page 4 of 4

3. (a) 10 Points Find the *Maclaurin series* for the function $f(x) = \frac{1}{1+x}$. Write its radius of convergence.

Solution: Using geometric series formula, we have

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots \quad \text{for } -1 < x < 1$$

The radius of convergence is clearly 1

(b) 10 Points Evaluate the integral $\int x(\ln x) dx$.

Solution: We integrate by parts. Let $u = \ln x$ and dv = x dx. Then $du = \frac{1}{x} dx$ and choose $v = \frac{1}{2}x^2$. Hence

$$\int x \ln x \, dx = \int u \, dv = uv - \int v \, du$$
$$= (\ln x) (\frac{1}{2}x^2) - \int \left(\frac{1}{2}x^2\right) \left(\frac{1}{x}\right) dx$$
$$= \frac{1}{2}x^2 \ln x - \frac{1}{2}\int x \, dx = \boxed{\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C}$$

(c) 13 Points Evaluate the integral $\int \frac{(1-x^2)^{1/2}}{x^4} dx$. (*Hint*: Use trigonometric substitution)

Solution: For
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
, let $x = \sin \theta$ and so $dx = d\cos \theta d\theta$. Then
 $(1-x^2)^{1/2} = (1-(\sin \theta)^2)^{1/2} = (1-\sin^2 \theta)^{1/2} = (\cos^2 \theta)^{1/2} = \cos \theta$. Then
 $\int \frac{(1-x^2)^{1/2}}{x^4} dx = \int \frac{\cos \theta}{\sin^4 \theta} \cos \theta d\theta = \int \frac{\cos^2 \theta}{\sin^2 \theta} \frac{1}{\sin^2 \theta} d\theta = \int \cot^2 \theta \csc^2 \theta d\theta = -\int y^2 dy = -\frac{1}{3}y^3 + c$
 $= -\frac{1}{3}\cot^3 \theta + c = \left[-\frac{1}{3}\left(\frac{(1-x^2)^{1/2}}{x}\right)^3 + c\right]$