$1. \ {\rm Show}$ that the line integral

$$\mathcal{I} = \int_{\mathcal{C}} \left(2x \cos z - x^2 \right) dx + (z - 2y) dy + \left(y - x^2 \sin z \right) dz$$

is independent of path and evaluate $\mathcal I,$ where $\mathcal C$ runs from (3,-2,0) to $(1,0,\pi)\,.$

2. Evaluate

$$\int_{\mathcal{C}} \left(xy + y + z \right) d\mathbf{s}$$

where ${\cal C}$ is the line segment from (0,0,2) to $(2,1,0)\,.$

3. Evaluate the line integral

$$\mathcal{I} = \oint_{\mathcal{C}} -xy^2 \, dx + xy^2 \, dy$$

where ${\cal C}$ is the boundary of the semicircular disk bounded by the x-axis and $y=\sqrt{4-x^2}.$

4. Find the flux
$$\left(\iint_{S} \mathbf{F} \bullet \mathbf{n} \ d\mathbf{S}\right)$$
 of the field
$$\mathbf{F} = xze^{y}\mathbf{i} - xze^{y}\mathbf{j} + z\mathbf{k}$$

across the surface S where S is the part of the plane x+y+z=1 in the first octant with outward orientation.

5. Find the surface area of the part of $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

6. Use the Divergence Theorem to compute

$$\iint_{S} \mathbf{F} \bullet \mathbf{n} \ d\mathcal{S}$$

where

$$\mathbf{F} = (x^3 + xy^2 + xz^2)\mathbf{i} + (x^2y + y^3 + yz^2)\mathbf{j} + (zx^2 + zy^2 + z^3)\mathbf{k}$$

and S~ is bounded by $x^2+y^2=4,\ z=0$ and z=3.

7. (\mathfrak{Bonus}) Let

$$\mathbf{F} = (\sin y + (x+1)^x) \mathbf{i} + (x \cos y + x^2) \mathbf{j}$$

 $(a) \ \mbox{Show that}$

$$\oint_{\mathcal{C}_a} \mathbf{F} \bullet \ d\mathbf{r} = 0$$

for every a, where \mathcal{C}_a is the circle of radius a centered at the origin.

(b) Is $\oint_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r} = 0$ path independent for any closed piecewisely smooth curve \mathcal{C} ? Explain.