

DENT NO.
NATURE

	1 2			3		TOTAL	
		/20		/20		/15	
İ	4	,	5	,		,	
		/20		/25			/100

2012 – 12 – 05

MATH 113 - Calculus I - Second Exam

Time Allowed: 80 min.

(You must show your working for all questions.)

1. [20 pts] Find the lines that are (a) tangent and (b) normal to the curve $x \sin 2y = y \cos 2x$ at the point $(\pi/4, \pi/2)$.

3. [15 pts] What are the dimensions of the lightest (minimum surface area) open-top right circular cylindrical can that will hold a volume of $1000~\rm{cm^3}$ [p282 q35]

2. [20 pts] Find the area of the region enclosed by $y=x^2-2x$ and y=x. [p298 q44]

4. [20 pts] Find F(4) and F'(x) if

$$F(x) = \int_{\sqrt{x}}^{2} \sin(t^2) dt$$
 [p282 q35]

5. [25 pts] Suppose

$$y = \frac{8x}{x^2 + 4}$$
, $y' = \frac{-8x^2 + 32}{(x^2 + 4)^2}$, and $y'' = \frac{16x(x^2 - 12)}{(x^2 + 4)^3}$.

[p211_q43]

a) Determine where the graph of y is increasing and where it is decreasing. Find the local maxima or minima, if any.

x	y'	y''	y
$-\infty < x < \cdots$			
$\cdots < x < \cdots$			
$\cdots < x < \cdots$			
$\cdots < x < \cdots$			
$\cdots < x < \cdots$			
$\cdots < x < +\infty$			

b) Determine where the graph of y is concave up and where it is concave down. Find the inflection points, if any.

c) Sketch the curve on the given coordinate system.

