Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator Page 1 of 4

April 24, 2019 [4:00 pm-5:10 pm]	Math 215/ Second Exam

Your Name	Your Signature			
Student ID #				
Professor's Name In order to receive credit, you must show all of your v	Your Department			
do not indicate the way in which you solved a problem, little or no credit for it, even if your answer is correct. work in evaluating any limits, derivatives.		Problem	Points	Score
• Place a box around your answer to each question.		1	20	
• If you need more room, use the backs of the pages and you have done so.	indicate that	2	25	
• Do not ask the invigilator anything.		3	35	
• Use a BLUE ball-point pen to fill the cover sheet. I sure that your exam is complete.	Please make	4	20	
• Time limit is 70 min.				

Do not write in the table to the right.

1. 20 points Suppose
$$P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ and $A = PDP^{-1}$. Compute A^4 .

Solution: First we find P^{-1} . Since det(P) = (1)(3) - (2)(2) = -1, we have $P^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}^{-1} = \frac{1}{\det(P)} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}.$

Denoting by I_2 the 2 × 2 identity matrix, we have

$$A^{4} = (PDP^{-1})^{4} = (PDP^{-1})(PDP^{-1})(PDP^{-1})(PDP^{-1}) = PD\underbrace{(PP^{-1})}_{I_{2}}D\underbrace{(PP^{-1})}_{I_{2}}D\underbrace{(PP^{-1})}_{I_{2}}DP^{-1}$$
$$= PDDDDP^{-1} = PD^{4}P^{-1}$$

Total:

100

Hence

$$A = PD^{4}P^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}^{4} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1^{4} & 0 \\ 0 & 3^{4} \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 81 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 162 & -81 \end{bmatrix}$$
$$= \begin{bmatrix} 321 & -160 \\ 480 & -239 \end{bmatrix}$$

2. Let $\mathscr{A} = {\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3}$ and $\mathscr{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ be bases for a vector space *V*, and suppose

 $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2, \ \mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3, \text{ and } \mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3.$

(a) 10 points Find the change-of-coordinate matrix from \mathscr{A} to \mathscr{B} .

	Γ4	-1	$\begin{bmatrix} 0\\ 1\\ -2 \end{bmatrix}$
$\mathop{\mathscr P}_{\mathscr{A}\leftarrow\mathscr{B}}=$	$\begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$	1	1
	0	1	-2
	-		_

(b) 15 points Find the coordinate vector $[\mathbf{x}]_{\mathscr{B}}$ relative to the basis \mathscr{B} for $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3$.

Solution: It is possible to solve this in two ways. First, write the vector as a linear combination of vectors in \mathcal{B} . That is,

$$\begin{aligned} \mathbf{x} &= 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3 = 3(4\mathbf{b}_1 - \mathbf{b}_2) + 4(-\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3) + (\mathbf{b}_2 - 2\mathbf{b}_3) \\ &= ((3)(4) + (4)(-1) + 0)\mathbf{b}_1 + ((3)(-1) + (4)(1) + (1)(1))\mathbf{b}_2 + ((3)(0) + (4)(1) + (1)(-2))\mathbf{b}_3 \\ &= 8\mathbf{b}_1 + 2\mathbf{b}_2 + 2\mathbf{b}_3. \end{aligned}$$
Hence $[\mathbf{x}]_{\mathscr{B}} = \begin{bmatrix} 8\\2\\2 \end{bmatrix}$.

The second way is directly to use the matrix we found in part (a).

$$[\mathbf{x}]_{\mathscr{B}} = \mathcal{P}_{\mathscr{A} \leftarrow \mathscr{B}}[\mathbf{x}]_{\mathscr{A}}$$
$$= \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 2 \\ 2 \end{bmatrix}$$

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorApril 24, 2019 [4:00 pm-5:10 pm]Math 215/ Second ExamPage 3 of 4

3. (a) 20 points Is $\lambda = 1$ an eigenvalue of $A = \begin{bmatrix} 4 & -2 & 3 \\ 0 & -1 & 3 \\ -1 & 2 & -2 \end{bmatrix}$? If so, find one corresponding eigenvector.

Solution: Denote by $p_A(\lambda)$ the characteristic polynomial of *A* where $p_A(\lambda) = \det(A - \lambda I)$. At $\lambda = 1$, this polynomial takes the value

$$p_A(1) = \det(A - I) = \det \begin{bmatrix} 4 - 1 & -2 & 3 \\ 0 & -1 - 1 & 3 \\ -1 & 2 & -2 - 1 \end{bmatrix} = \begin{vmatrix} 3 & -2 & 3 \\ 0 & -2 & 3 \\ -1 & 2 & -3 \end{vmatrix} = 0$$

which follows from the third column is a scalar multiple of the second. Hence $\lambda = 1$ is an eigenvalue. Next suppose $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is an eigenvector of *A* corresponding to $\lambda = 1$. Then $\mathbf{x} \in N(A - I)$. Therefore $(A - I)\mathbf{x} = \mathbf{0}$ and and row reduce the augmented matrix for A - I.

 $[A-I|0] = \begin{bmatrix} 3 & -2 & 3 & | & 0 \\ 0 & -2 & 3 & | & 0 \\ -1 & 2 & -3 & | & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -2 & 3 & | & 0 \\ 0 & -2 & 3 & | & 0 \\ 0 & 4 & -6 & | & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -2 & 3 & | & 0 \\ 0 & 1 & -3/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

Then the eigenvector must be of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ (3/2)t \\ t \end{bmatrix} = \frac{t}{2} \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}.$$

Consequently one corresponding eigenvector is
$$\begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}.$$

(b) 15 points Show that if A is both diagonalizable and invertible, then so is A^{-1} .

Solution: Since A is diagonalizable, there exists an invertible matrix P and a diagonal matrix D such that

$$P^{-1}AP = D = \begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{vmatrix} \Rightarrow A = PDP^{-1}$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of A not all of them need be distinct and not all of them need be real.

Since A is invertible, $\det(A) \neq 0$. We know that $\det(A) = \det(PDP^{-1}) = \det(P)\det(D)\det(D)\det(P^{-1}) = \det(P)\det(D)\frac{1}{\det(P)} = \det(D)$ and that $\det(D) = \lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_n$, the product of all diagonal entries. So $\det(D) \neq 0$, D is also invertible and we have $\lambda_k \neq 0$ for each $k \geq 1$. Hence D^{-1} is given by

$$D^{-1} = \begin{bmatrix} 1/\lambda_1 & 0 & \cdots & 0\\ 0 & 1/\lambda_2 & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & 1/\lambda_n \end{bmatrix}$$

Since

$$A^{-1} = (P^{-1})^{-1} D^{-1} P^{-1} = P D^{-1} P^{-1}$$

and A^{-1} is also diagonalizable with the same diagonalizing matrix *P*, and the diagonal matrix is made up of the inverses of the eigenvalues of *A*.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorApril 24, 2019 [4:00 pm-5:10 pm]Math 215/ Second ExamPage 4 of 4

4. 20 points Find a basis for the eigenspace for $A = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix}$ corresponding to the eigenvalue $\lambda = 3$.

Solution: Suppose $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is an eigenvector of A corresponding to $\lambda = 3$. Then $\mathbf{x} \in N(A - 3I)$. Therefore $(A - 3I)\mathbf{x} = \mathbf{0}$ and and row reduce the augmented matrix for A - 3I. $\begin{bmatrix} A - 3I | \mathbf{0} \end{bmatrix} = \begin{bmatrix} 4 - 3 & \mathbf{0} & -1 & | & \mathbf{0} \\ 3 & \mathbf{0} - 3 & 3 & | & \mathbf{0} \\ 2 & -2 & 5 - 3 & | & \mathbf{0} \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & \mathbf{0} & -1 & | & \mathbf{0} \\ 3 & -3 & 3 & | & \mathbf{0} \\ 2 & -2 & 2 & | & \mathbf{0} \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & \mathbf{0} & -1 & | & \mathbf{0} \\ 0 & -3 & 6 & | & \mathbf{0} \\ 0 & -2 & 4 & | & \mathbf{0} \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & \mathbf{0} & -1 & | & \mathbf{0} \\ 0 & 1 & -2 & | & \mathbf{0} \\ 0 & 0 & 0 & | & \mathbf{0} \end{bmatrix}$ This shows the system has free variable. The general solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ 2t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$ Consequently a basis for the eigenspace N(A - 3I) is $\mathscr{B} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}.$