
Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 29 May 2019 [15:50-17:20] MATH113. Retake Final Exam

29 May 2019 [15:50-17:20]	MATH113, Retake Final Exam	13, Retake Final Exam Page 1 of 4				
FORENAME:		Question	Points	Score		
SURNAME:		1	65			
STUDENT NO:		Total:	65			
DEPARTMENT:			1			
Teacher: 🗌 Neil Course 🗌 Vasfi E	Eldem 🗌 Asuman Özer 🗌 Sezgin Sezer					
SIGNATURE:						
 The time limit is 90 minutes. Give your answers in exact form (for example π/3 or 5√3), except as noted in particular problems. All communication between students, either verbally or non-verbally, is strictly forbidden. 	 hes, and any digital means of communication are forbidden. The sharing of pens, erasers or any other item between students is forbidden. In order to receive credit, you must show 	ay in which yo ay get little or answer is corr a box around jon. do not write in	no credit f ect. your answe	or it, even r to each		
Solution: The functions $x^2 - 1$ at continious, left and right hand limit $\lim_{x \to 3^-} (x^2 - 1) = 8$ $\lim_{x \to 3^-} (2ax) = 6a$ $6a = 8 \Rightarrow a = \frac{4}{3}$	$x) = \begin{cases} x^2 - 1, & x < 3\\ 2ax, & x \ge 3 \end{cases}$ continious at every x ? Ind $2ax$ are continious on which they are defined. In it at $x = 3$ should be equal: $x^2 + 2x^2 - 2 = 0$ has exactly one solution on $[0, 1]$.	order to the	e function	n f be		
Solution: $f(x) = x^4 + 2x^2 - 2$ f(0) = -2 < 0, f(1) = 1 >						

is increasing on [0,1] because f'(x) > 0 between x = 0 and x = 1. So, equalion has only one solution at on [0,1].

2. 15 points Find the area of the region enclosed by the curves $x = y^3$ and $x = y^2$.

3. (a) 15 points Find the length of the curve $y = \frac{x^5}{5} + \frac{1}{12x^3}, \frac{1}{2} \le x \le 1.$

Solution:	
$\frac{dy}{dx} = x^4 - \frac{1}{4x^4} \Rightarrow (\frac{dy}{dx})^2 = x^8 - \frac{1}{2} + \frac{1}{16x^8}$	
$\Rightarrow \sqrt{1 + (\frac{dy}{dx})^2} = \sqrt{x^8 + \frac{1}{2} + \frac{1}{16x^8}} = \sqrt{(x^4 + \frac{1}{4x^4})^2} = x^4 + \frac{1}{4x^4}$	
$\int_{-\frac{1}{2}}^{1} (x^4 + \frac{1}{4x^4}) dx = \frac{x^5}{5} + \frac{1}{12x^3} \Big _{-\frac{1}{2}}^{1} = \frac{153}{160}$	

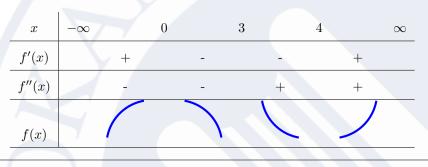
- (b) 30 points Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve $x = y y^3$ and the y axis about
 - (i). the *x*-axis
 - (ii). the line y = 1.

Solution:

(i). the shell method Shell radius: r = yShell high: $x = y - y^3$

$$V = \int_{0}^{1} 2\pi y (y - y^{3}) dy = 2\pi \int_{0}^{1} (y^{2} - y^{4}) dy$$
$$= 2\pi \left(\frac{y^{3}}{3} - \frac{y^{5}}{5}\right) \Big|_{0}^{1} = 2\pi \left(\frac{1}{3} - \frac{1}{5}\right) = \frac{4\pi}{15}$$

(ii). the shell method Shell radius: r = (1 - y)Shell high: x=y-y³


$$V = \int_{0}^{1} 2\pi (1-y)(y-y^{3})dy = 2\pi \int_{0}^{1} (y^{4}-y^{3}-y^{2}+y)dy$$
$$= 2\pi \left(\frac{y^{5}}{5} - \frac{y^{4}}{4} - \frac{y^{3}}{3} + \frac{y^{2}}{2}\right)\Big|_{0}^{1} = 2\pi \left(\frac{1}{5} - \frac{1}{4} - \frac{1}{3} + \frac{1}{2}\right) = \frac{7\pi}{30}$$

- 4. 20 points Let $y = x^5 5x^4 = x^4(x-5)$ be given.
 - 1. Identify the set on which the function defined.
 - $2. \ {\rm Find}$ local and absolute maximum, local minimum and saddle points.
 - 3. Identify the interval on which the function is increasing, decreasing, concave up and concave down.
 - 4. Sketch the graph.

Solution:

- 1. Critical Points: x = 0 and x = 4.
- 2. Local max: f(0) = 0, Local min: f(4) = -256, inf. point: f(3) = -162
- 3. There is no asymptotes!

	y						
-3 -2 -1	1	2	3	4	5	6	$x \rightarrow 7$