th/Mat 113 Summer 2015 First Exam / Birinci Arasınav					July	July 08, 2015	
Your Name / Ad - Soyad	Signature / İmza	Problem	1	2	3	4	Total
Student ID # / Öğrenci No		Points:	25	25	25	25	100
	ükenmez!)	Score:					
Cime Limit: 60 min.							
1. (a) (9 Points) $\lim_{x \to 1^{-}} \frac{\sqrt{2x}(x-1)}{ x-1 } = ?$	DC	+					
Solution: $\lim_{x \to 1^{-}} \frac{\sqrt{2x} (x-1)}{ x-1 } = \lim_{x \to 1^{-}} \frac{\sqrt{2x} (x-1)}{-(x-1)} = \lim_{x \to 1^{-}} (-\sqrt{2x}) = \boxed{-\sqrt{2}}$ p.90, pr.18(b)							
$u^{4} - 1$							
(b) (8 Points) $\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1} = ?$							
Solution:					_	_	
$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1} = \lim_{u \to 1} \frac{(u - 1)(u - 1)(u + 1)(u^2 + 1)}{(u - 1)(u^2 + u + 1)} = \lim_{u \to 1} \frac{(u + 1)(u^2 + 1)}{(u^2 + u + 1)} = \frac{(1 + 1)(1^2 + 1)}{(1^2 + 1 + 1)} = \frac{4}{3}$							
p.73, pr.27							
				7			
(c) (8 Points) $\lim_{x \to \infty} x \csc(2x) = 2$							
(c) (8 Points) $\lim_{x \to 0} \frac{x \csc(2x)}{\cos(5x)} = ?$	+ + ~						
Solution:					Г	1	
$\lim_{x \to 0} \frac{x \csc(2x)}{\cos(5x)} = \lim_{x \to 0}$	$\left(\frac{x}{\sin(2x)} \cdot \frac{1}{\cos(5x)}\right) = \left(\frac{1}{2}\lim_{x \to 0} \frac{1}{\sin(5x)}\right)$	$\left(\lim_{x\to 0}\frac{2x}{\cos(x)}\right)\left(\lim_{x\to 0}\frac{1}{\cos(x)}\right)$	$\left(\frac{1}{(5x)}\right) =$	$=\left(\frac{1}{2}\cdot 1\right)$	(1) =	$\frac{1}{2}$	
p.73, pr.27							
L							

2. (a) (14 Points) Show that $f(x) = x^3 - 15x + 1$ has three solutions between -4 and 4.

Solution: First note that f is a polynomial and so is continuous everywhere. Moreover f(-4) = -3 < 0 and $f(-3) = 19 > 0 \Rightarrow f$ has a root between -4 and -3 by the Intermediate Value Theorem. Similarly, f(1) = -13 < 0 implies that f has a solution between -3 and 1. Finally, since f(1) < 0 and f(4) = 5 > 0, Intermediate Value Theorem yields a third solution between 1 and 4. So all in all f has three solutions between -4 and +4. A polynomial of degree three cannot have more than 3 roots. Hence the given function has *precisely* three solutions in [-4, +4].

p.98, pr.35(a)

(b) (11 Points) Find the limit $\limsup_{t\to 0} \left(\frac{\pi}{2}\cos(\tan t)\right)$. Is the functions continuous at the point being approached?

Solution:

$$\lim_{t \to 0} \sin\left(\frac{\pi}{2}\cos(\tan t)\right) = \sin\left(\frac{\pi}{2}\cos(\tan 0)\right) = \sin\left(\frac{\pi}{2}\cos(0)\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

and function continuous at x = 0.

3. (a) (13 Points) Find all asymptotes for $y = \frac{x^2 + 4}{x - 3}$.

Solution:
$$y = \frac{x^2 + 4}{x - 3}$$
 is undefined at $x = 3$: $\lim_{x \to 3^-} \frac{x^2 + 4}{x - 3} = -\infty$ and $\lim_{x \to 3^+} \frac{x^2 + 4}{x - 3} = +\infty$, thus $\boxed{x = 3}$ is a vertical asymptote.
Since $\lim_{x \to \pm \infty} \frac{x^2 + 4}{x - 3} = \mp \infty$, there is *no* horizontal asymptote.
For the oblique asymptote, the long division gives
 $\frac{x^2 + 4}{x - 2} = (x + 3) + \frac{13}{x - 2}$

Since $\lim_{\substack{x \to \pm \infty \\ p.98, \text{ pr47}}} \frac{13}{x-3} = 0$, we see that the line y = x+3 is the oblique asymptote.

```
(b) (12 Points) \lim_{x \to \infty} \left( \sqrt{9x^2 - x} - 3x \right) = ?
```

Solution:

$$\lim_{x \to \infty} \left(\sqrt{9x^2 - x} - 3x \right) = \lim_{x \to \infty} \left(\sqrt{9x^2 - x} - 3x \right) \frac{\sqrt{9x^2 - x} + 3x}{\sqrt{9x^2 - x} + 3x}$$

$$= \lim_{x \to \infty} \frac{9x^2 - x - 9x^2}{\sqrt{9x^2 - x} + 3x}$$

$$= \lim_{x \to \infty} \frac{-x}{\sqrt{9 - 1/x} + 3}$$

$$= \lim_{x \to \infty} \frac{-1}{\sqrt{9 - 1/x} + 3}$$

$$= \frac{-1}{\sqrt{9 - 0} + 3}$$

$$= \left[-\frac{1}{6} \right]$$

4. (a) (12 Points) Find an equation for the line tangent to the graph of $y = \sqrt{x+1}$ at (8,3).

Solution: By using the definition, we have

$$\begin{aligned} \frac{dy}{dx} &= \lim_{h \to 0} \frac{\sqrt{(8+h)+1} - \sqrt{8+1}}{h} = \lim_{h \to 0} \frac{\sqrt{9+h} - \sqrt{9}}{h} \frac{\sqrt{9+h} + \sqrt{9}}{\sqrt{9+h} + \sqrt{9}} \\ &= \lim_{h \to 0} \frac{\cancel{9}+h - \cancel{9}}{h(\sqrt{9+h} + 3)} \\ &= \lim_{h \to 0} \frac{\cancel{h}}{\cancel{1}(\sqrt{9+h} + 3)} \\ &= \lim_{h \to 0} \frac{1}{\sqrt{9+h} + 3} \\ &= \frac{1}{\sqrt{9+0} + 3} \\ &= \frac{1}{3+3} \\ &= \left[\frac{1}{6}\right] \end{aligned}$$

So $y - y_0 = m(x - x_0) \Rightarrow y - 3 = \frac{1}{6}(x - 9) \Rightarrow 6(y - 3) = x - 9 \Rightarrow \boxed{x - 6y = 9}$ p.105, p.25

(b) (13 Points) Use the formula $f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$ to find $\frac{df}{dx}$ if $f(x) = x^2 - 3x + 4$.

Solution:

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{(z^2 - 3z + \cancel{A}) - (x^2 - 3x + \cancel{A})}{z - x} = \lim_{z \to x} \frac{(z^2 - x^2) - (3z - 3x)}{(z - x)}$$

$$= \lim_{z \to x} \frac{(z - x)(z + x - 3)}{(z - x)}$$

$$= \lim_{z \to x} (z + x - 3)$$

$$= (x + x - 3) = \boxed{2x - 3}$$