

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No				
Professor's Name / Öğretim Üyesi	Your Department / Bölüm			
• This exam is closed book. π				
 Give your answers in exact form (for example ⁿ/₃ or 5√3), except as noted in particular problems. Calculators, cell phones are not allowed. In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating any limits, derivatives. Place a box around your answer to each question. If you need more room, use the backs of the pages and indicate that you have done so. Do not ask the invigilator anything. Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete. Time limit is 80 min. 		Problem	Points	Score
		1	14	
		2	14	
		3	14	
		4	17	
		5	16	
		6	11	
		7	14	
Do not write in the table to the right.		Total:	100	

1. 14 Points Determine the values of constants *a*, *b*, *c*, and *d* so that $f(x) = ax^3 + bx^2 + cx + d$ has a local maximum at (0,0) and a local minimum at the point (1,-1).

Solution: $f(x) = ax^3 + bx^2 + cx + d \Rightarrow f'(x) = 3ax^2 + 2bx + c$ and f''(x) = 6ax + 2b. Since there is a local minimum at x = 1 we have $f'(1) = 0 \Rightarrow 3a + 2b + c = 0$. Similarly, local maximum at x = 0 implies $f'(0) = 0 \Rightarrow 3a(0)^2 + 2b(0) + c = 0$ and so c = 0. Furthermore, the graph passes through (1, -1) implies $f(1) = -1 \Rightarrow a + b + c + d = -1$ and passes through (0, 0) implies $f(0) = 0 \Rightarrow d = 0$. Now we have the system

$$a+b = -1 \tag{1}$$

$$3a+2b = 0. (2)$$

Solving the system, we have a = 2, b = -3, c = 0, d = 0 so there is only one curve satisfying the requirements which is $f(x) = 2x^3 - 3x^2$. Just to check that this is the correct curve we need, we employ the Second Derivative Test here (indeed, this is necessary here) f''(0) = 12(0) - 6 = -6 < 0 so local max. at x = 0 and f''(1) = 12(1) - 6 = 6 > 0 so local min. at x = 1.

- *α* -

2. 14 Points Find the extreme values (absolute and local) of $f(x) = x - 4\sqrt{x}$ and where they occur.

3. 14 Points

An isosceles triangle has its vertex at the origin and its base parallel to the x-axis with the vertices above the axis on the curve $y = 27 - x^2$. Find the largest area the triangle can have.

Solution: The area of the largest isosceles triangle that can be drawn with one vertex at the origin and with the others on a line parallel to and above the x-axis and on the curve $y = 27 - x^2$ is: If we let x be the distance *x*-distance between the vertex and the other vertex to the right (x would be half its base, and it doesn't matter which vertex we choose since $y = 27 - x^2$ is symmetric about the y-axis), then the height will be the x-value at that point; $27 - x^2$. So the total area would be: $\frac{1}{2}A = (\text{base})(\text{height}) = (2x)(27 - x^2)/2 = 27x - x^3$ Notice that since x must be above the x-axis, it must be less than the root of $y = 27 - x^2$, which is $3\sqrt{3}$, and must be greater than 0, so we have $0 < x < 3\sqrt{3}$ (if these were less than/equal to and greater than/equal to, you would have to check these endpoints after you find the critical points since they could yield max/min). The maximum can occur when A'(x) = 0: $A(x) = 27x - x^3 A'(x) = 27 - 3x^2$ Setting A'(x)equal to 0, we get: $27 - 3x^2 = 0 \Rightarrow x^2 = 9 \Rightarrow x = 3$ (not -3 since x must be greater than 0) If we check x = 3 in the area function, we get: $A(3) = 27(3) - (3)^3 = 54$ Since there were no other possible points that could yield the maximum (there were the endpoints but they are not included since x cannot be equal to 0 or $3\sqrt{3}$), so the answer is 54 and A''(x) = -6x. The critical points are -3 and 3. But -3 is not in the domain. Since A''(3) = -18 < 0 and $A(3\sqrt{3}) = 0$, the maximum occurs at x = 3 and so the largest area triangle can ve is A(3) = 54.p.241, pr.45

4. Given the curve $y = \frac{x^2 + 1}{x}$ and derivatives $y' = \frac{x^2 - 1}{x^2}$ and $y'' = \frac{2}{x^3}$

(a) 5 Points Identify the *domain* of f and any *symmetries* the curve may have.

Solution: The domain of f is $(-\infty, 0) \cup (0, +\infty) = \mathbb{R} - \{0\}$. Since f(-x) = -f(x), we note that f is an odd function, so the graph of f is symmetric about the origin. p.241, pr.45

(b) 6 Points Find the intervals where the graph is increasing and decreasing. Find the local maximum and minimum values.

Solution: We have $y' = \frac{x^2 - 1}{x^2} = 0$ if and only if $x^2 = 1$, that is iff $x = \pm 1$ are the critical points. Note that $f' \begin{cases} > 0, & \text{on } (-\infty, -1) \cup (+1, +\infty) & \text{f is incressing} \\ < 0, & \text{on } (-1, 0) \cup (0, +1) & \text{f is decressing} \end{cases}$

Thus, f is increasing on $(-\infty, -1) \cup (+1, +\infty)$ and decreasing on $(-1, 0) \cup (0, +1)$. There are two local extrema one is the local maximum located at x = -1 and the other is the local minimum located at x = 1, the values are f(-1) = -2, f(1) = 2. respectively. p.241, pr.45

(c) 6 Points Determine where the graph is concave up and concave down, and find any inflection points.

Solution: We have $y'' = \frac{2}{x^3}$ and so $f'' \begin{cases} > 0, & \text{on } (0, +\infty) & \text{f is concave up} \\ < 0, & \text{on } (-\infty, 0) & \text{f is concave down} \end{cases}$

Hence f is concave up on $(0, +\infty)$ and concave down on $(-\infty, 0)$. Although f'' changes the sign at x = 0, the graph has no point of inflection as there is no tangent line at x = 0. p.241. pr.45

5.
$$y = \frac{x^2 + 1}{x}$$
 (continued)

(a) 6 Points Find the asymptotes.

Solution: We have $\lim_{x\to 0^+} \frac{x^2+1}{x} = +\infty$ and $\lim_{x\to 0^-} \frac{x^2+1}{x} = -\infty$. From these we see that the graph has a *vertical asymptote at* x = 0. Next there are no horizontal asymptotes as $\lim_{x \to \pm \infty} \frac{x^2 + 1}{x} = \pm \infty$ do not exist. For the oblique asymptote, note that $\frac{x^2 + 1}{x} = x + \frac{1}{x}$ and we have 1 $\frac{1}{x} \to 0$ as $x \to \pm \infty$. This shows that the line y = x is an oblique asymptote. Note that f(x) > x if x > 0 and f(x) < x if x < 0. pr.45

Desired Output

6. 11 Points $\int (\sqrt{x} + \sqrt[3]{x}) dx = ?$

Solution:

$$\int \left(\sqrt{x} + \sqrt[3]{x}\right) dx = \int \left(x^{1/2} + x^{1/3}\right) dx = \left[\frac{x^{1/2+1}}{1/2+1} + \frac{x^{1/3+1}}{1/3+1}\right] + C = \left[\frac{x^{3/2}}{3/2} + \frac{x^{4/3}}{4/3}\right] + C = \left[\frac{2}{3}x^{2/3} + \frac{3}{4}x^{4/3} + C\right]$$

7. Suppose

$$g(x) = \begin{cases} x^3, & -2 \le x \le 0\\ x^2, & 0 < x \le 2. \end{cases}$$

(a) 5 Points Find the left-hand and right-hand derivatives at x = 0.

Solution: The right-hand derivative is $g'_{+}(0) = \lim_{h \to 0^+} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0^+} \frac{h^2 - 0^3}{h} = \lim_{h \to 0^+} (h) = 0$. Similarly, the left-hand derivative is $g'_{-}(0) = \lim_{h \to 0^-} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0^-} \frac{h^3 - 0^3}{h} = \lim_{h \to 0^-} (h^2) = 0$. Therefore g is differentiable at x = 0 and its derivative is g'(0) = 0.

(b) 3 Points Does g satisfy the hypotheses of the Mean Value Theorem in this interval? Explain.

Solution: We begin with restating MVT. **The Mean Value Theorem:** Suppose y = g(x) is continuous on a closed interval [a,b] and differentiable on the interval's interior (a,b). Then there is at least one point $c \in (a,b)$ at which $\frac{g(b) - g(a)}{b-a} = g'(c)$. Here we have a = -2, b = 2. First note that $\lim_{x \to -2^+} g(x) = \lim_{x \to -2^+} (x^3) = (-2)^3 = -8 = g(-2)$ and so g(x) is (right-)continuous at a = -2 and since $\lim_{x \to 2^-} g(x) = \lim_{x \to 2^-} g(x)^2 = 4 = g(2)$ so that g(x) is (left-)continuous at x = 2. By the solution of part (a), g(x) is differentiable at x = 0, so is continuous there. Hence g(x) is continuous on [-2,2]. Since x^2 and x^3 are differentiable functions and g(x) is differentiable at x = 0, it follows that g(x) is differentiable on (-2,2) and so g(x) satisfies the hypotheses of MVT. p.196, pr.6 (c) 6 Points Find the value(s) of *c* that satisfy the equation $\frac{g(b) - g(a)}{b - a} = g'(c)$ in the conclusion of the Mean Value Theorem for *g*.

Solution: By part (a), there exists at least one such c. To find all c's, first note that $\frac{g(b) - g(a)}{b - a} = g'(c) \Rightarrow 3 = g'(c)$. If $-2 \le x < 0$, then $g'(x) = 3x^2 = 3 \Rightarrow c = \pm 1$. But $c = 1 \notin (-2,0)$ so c = -1 is the only solution in this case. Now if $x \in (0,2)$, then $g'(x) = 2x \Rightarrow 3 = g'(c) \Rightarrow 2c = 3 \Rightarrow c = \frac{3}{2} \in (0,2)$. Further $c \neq 0$ as $g'(0) = 0 \neq 3$. Consequently c satisfies the required condition iff $c \in \{-1, \frac{3}{2}\}$.