

Solve the problem.

2) The graphs below show the first and second derivatives of a function y = f(x). Select a possible graph of f that passes through the point P. 2)

[NOTE: Graph vertical scales may vary from graph to graph.]

2

3)

B) [NOTE: Graph vertical scales may vary from graph to graph.] C) ; [NOTE: Graph vertical scales may vary from graph to graph.] D)

[NOTE: Graph vertical scales may vary from graph to graph.]

3

4)

Which of the graphs shows the solution of the given initial value problem? 5) $\frac{dy}{dx} = 2x$, y = 3 when x = -1

6

8

Solve the problem.

6) Using the following properties of a twice-differentiable function y = f(x), select a possible graph of 6) f.

B)

7

[NOTE: Graph vertical scales may vary from graph to graph.]

[NOTE: Graph vertical scales may vary from graph to graph.]

13

13) Select an appropriate graph of a twice-differentiable function y = f(x) that passes through the points $(-\sqrt{2},1), \left[-\frac{\sqrt{6}}{3}, \frac{5}{9}\right](0,0), \left[\frac{\sqrt{6}}{3}, \frac{5}{9}\right]$ and $(\sqrt{2},1)$, and whose first two derivatives have the following sign patterns.

13)

15) _

16)

14) The graphs below show the first and second derivatives of a function y = f(x). Select a possible 14) graph f that passes through the point P.

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. 15)

16)

A) Absolute maximum only.
B) Absolute minimum only.
C) Absolute minimum and absolute maximum.

D) No absolute extrema.

Answer the problem. 42) Use the following function and a graphing calculator to answer the questions.	44) A team of engineers is testing an experimental high-voltage fuel cell with a potent application as an emergency back-up power supply in cell phone transmission to Understand the understand the support of the supp	ial 44)
$f(x) = \sqrt{5x} + 0.9 \sin x, [0, 2\pi]$	Untortunately, the voltage of the prototype cell drops with time according to the e $V(t) = -0.0306t^3 + 0.373t^2 - 2.16t + 15.1$, where V is in volts and t is the time of open	quation ration in
a). Plot the function over the interval to see its general behavior there. Sketch the graph below.	hours. The cell provides useful power as long as the voltage remains above $< > v$ Newton's method to find the useful working time of the cell to the nearest tenth of (that is cells $v(t) = 24$ with: U is $t = 7$ hours as way initial guess and show all us	an hour
⁶ y y y y y y y y y y y y y y y y y y y		
5 	45) The curve y = tan x crosses the line y = 4x between x = 0 and x = $\frac{1}{2}$. Use Newton's to find where the line and the curve cross. (Round your answer to two decimal pla	method 45)
4 4 	Give an appropriate answer.	
	46) Show that the function $f(x) = x^3 + \frac{3}{x^2} + 2$ has exactly one zero on the interval (- ∞ , ()). 46)
	Estimate the limit by graphing the function for an appropriate domain. Confirm your est	imate by using l'Hopital's rule.
· · · · · · · · · · · · · · · · · · ·	Show each step of your calculation. a_{T} $b_{m} = \cos x - 1$	47)
	$\frac{47}{x \to 0} \lim_{x \to 0} \frac{1}{e^x - x - 1}$	47)
b). Find the interior points where $\mathbf{f} = 0$ (you may need to use the numerical equation solver to approximate a solution). You may wish to plot \mathbf{f} as well. List the points as ordered pairs (x, y).	 Solve the problem. 48) Use Newton's method to estimate the solutions of the equation 3x² + 4x - 5 = 0. St x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Tl each case find x₂. 	art with 48) hen, in
	49) Sketch a smooth curve through the origin with the following properties: $f'(x) > 0$ f	or x < 0: 49)
c). Find the interior points where \mathbf{f}' does not exist. List the points as ordered pairs (x, y).	f'(x) < 0 for x > 0; f''(x) approaches 0 as x approaches -∞; and f''(x) approaches ∞.	0 as x
d). Evaluate the function at the endpoints and list these points as ordered pairs (x, y)	50) As x moves from left to right though the point $c = 6$, is the graph of $f(x) = x + \frac{1}{x}$ risk	ing, or is 50)
u). Evaluate the function at the endpoints and list these points as ordered pairs (x, y).	it falling? Give reasons for your answer.	
e). Find the function's absolute extreme values on the interval and identify where they occur.		
Solve the problem. 43) Let $c(x) = t(p_0 - p)p^3$ where t and p_0 are constants. Show that $c(x)$ is greatest when	43)	
$\mathbf{p} = \frac{3}{4}\mathbf{p}_0.$		
25	26	
folge de versibles		
Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a	51)	imate by using l'Hopital's rule.
Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. $58) \lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$	imate by using l'Hopital's rule. 58)
 Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? 	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem.	imate by using l'Hopital's rule. 58)
 Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? 	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum variables.	imate by using l'Hopital's rule. 58) of the 59)
Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives.	imate by using l'Hopital's rule. 58) of the 59) lue. neously.
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? $\int_{0}^{1} \int_{0}^{1} \int_{0}^$	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$	imate by using l'Hopital's rule. 58) of the 59) lue. lecously.
Solve the problem. 51) The graph below shows the position s = f(t) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative?	51) 51) 51) 51) 52) 53) 54) 55) 56) 58)	imate by using l'Hopital's rule. 58) of the 59) neously. imate by using l'Hopital's rule.
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative?	51) 51) 51) 55) 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{\chi}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim $x\sqrt{x}$	imate by using l'Hopital's rule. 58) of the 59) neously. imate by using l'Hopital's rule. 60)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At a provimately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) 51) 51) 53) 54) 55) 56) 56) 56) 50) Ethe problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) 52)	imate by using l'Hopital's rule. 58) of the 59) ecously. imate by using l'Hopital's rule. 60)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{X \to 0^+} x\sqrt{x}$ 52) Solve the problem. 61) Let $t(x) = x^3 - 16x $	imate by using l'Hopital's rule. 58) of the 59) neously. imate by using l'Hopital's rule. 60) 61)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum variable the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{x \to 0^+} x\sqrt{x}$ 52) Solve the problem. 61) Let $f(x) = x^3 - 16x $ (a) Does $f_1^{(0)}$ exist?	imate by using l'Hopital's rule. 58) of the 59) neously. imate by using l'Hopital's rule. 60) 61)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{X \to 0^+} x\sqrt{x}$ 52) Solve the problem. 61) Let $(x) = x^3 - 16x $ 63) (a) Does $f'(4)$ exist? (b) Does $f'(4)$ exist?	imate by using l'Hopital's rule. 58) of the 59) neously. imate by using l'Hopital's rule. 60) 61)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum vara Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim< $x\sqrt{x}$ 52) Solve the problem. 61) Let $f(x) = x^3 - 16x $ 53) (a) Does $f'(0)$ exist? (b) Does $f'(4)$ exist? (c) Does $f'(4)$ exist? (d) Determine all extrema of f.	imate by using l'Hopital's rule. 58) 58) of the 59) ilue. ieously. imate by using l'Hopital's rule. 60) 61)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim: $x\sqrt{x}$ $x \to 0^+$ Solve the problem. 61) Let $f(x) = x^3 - 16x $ 52) Solve the problem. 63) (a) Does $f'(0)$ exist? (b) Does $f'(4)$ exist? (c) Does $f'(4)$ exist? (d) Determine all extrema of f. 54) Use Newton's method to estimate the solution of the equation $4x - 2x^2 + 3 = 0$. Statistical solution and with $x_0 = -1$ for the solution on the left. To	imate by using l'Hopital's rule. 58) of the 59) indue. recousily. imate by using l'Hopital's rule. 60) 61) ent with 62)
Solve the problem. Solve the problem. 1) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum var Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{X \to 0^+} x\sqrt{x}$ 52) Solve the problem. 63) (a) Does f(0) exist? (b) Does f(0) exist? (c) Does f(0) exist? (c) Does f(4) exist? (d) Determine all extrema of f. 54) (2) Use Newton's method to estimate the solution on the left. To each case find x_2 .	imate by using l'Hopital's rule. 58) 59) inter 59) imate by using l'Hopital's rule. 60) 61) ene, in 62)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative? $\int_{1}^{3} \int_{1}^{1} \int_{1}^$	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51) 58) $\lim_{X \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum va Then graph the function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim< $x\sqrt{x}$ $x \to 0^+$ Solve the problem. 61) Let $[x] = x^3 - 16x $ 63) (a) Does $f'(a)$ exist? (b) Does $f'(a)$ exist? (c) Does $f'(-4)$ exist? (d) Determine all extrema of f. 54) (a) Find the approximate values of r1 through r4 in the factorization $(42^3 - 12^3 -$	imate by using l'Hopital's rule. 58) 58) of the 59) itue. reously. 60) 61) 61) ener, in 62) 63)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51) 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum varation the graph where the function has a local maximum or local minimum varation the graph of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim< \sqrt{x} $x \to 0^+$ Solve the problem. 61) Let $f(x) = x^3 - 16x $ 63) (a) Does $f'(4)$ exist? (b) Does $f'(4)$ exist? (c) Does $f'(4)$ exist? (d) Determine all extrema of f. 54) (a) Sind the approximate values of r_1 through r_4 in the factorization each case find x_2 . 55) (a) Find the approximate values of r_1 through r_4 in the factorization each case find x_2 .	imate by using l'Hopital's rule. 58) 58) of the 59) ineeusly. imate by using l'Hopital's rule. 60) 61) art with 62) 63)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum varthen graph the function in a region large enough to show all these points simultat Add to your picture the graphs of the functions first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) lim $x\sqrt{x}$ $x \to 0^+$ Solve the problem. 61) Let $f(x) = x^3 - 16x $ 52) Solve the problem. 63)	imate by using l'Hopital's rule. 58) 59) interview 60) 61) 61) 63) 63) 64)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51)	imate by using l'Hopital's rule. 58) 59) inter by using l'Hopital's rule. 60) 61) 61) 61) 61) 63) 63) 64) 1100000000000000000000000000000000000
Solve the problem. Solve the problem. 1) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At a provimately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative? $\int_{0}^{1} \int_{0}^{1} \int_{0}^{$	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51)	imate by using l'Hopital's rule. 58) 58) inte 59) inte 60) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 62) 63) 63) 63) 63) 63) 63) 65)
Solve the problem. Solve the problem. 1) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51) 58) $\frac{\sin x}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum variable the graph where the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 52) 60) 101 $\sqrt{x^2}$ 53) (a) Does $f(0)$ exist? (b) Does $f(4)$ exist? (c) Does $f(-4)$ exist? (c) Does $f(-4)$ exist? (d) Determine all extrema of f. 54) (a) Eve Newton's method to estimate the solutions of the equation $4x - 2x^2 + 3 = 0.5x$ $x_1 = 1.5 to the right-hand solution and with x_0 = -1 for the solution on the left. Th each case find x_2. 55) (a) Find the approximate values of r_1 through r_4 in the factorization 6x^4 - 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_4). 60) If the derivative of an even function for an appropriate domain. Confirm your est Show each step of your calculation. (b) Find the approximate values of r_1 through r_4 in the factorization 6x^4 - 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_4). 61) If the derivative of an even function for an ap$	imate by using l'Hopital's rule. 58) 58) inter 59) inter 59) inter by using l'Hopital's rule. 60) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 63) 63) 63) 1000000000000000000000000000000000000
Solve the problem. 5) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative? o o o o o o o o o o	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51) 58) $\lim_{x\to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ Solve the problem. 59) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function is as a local maximum or local minimum variable the graph where the function is first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 52) 60) $\lim_{x\to \sqrt{x}} \sqrt{x}$ 52) Solve the problem. 53) (1) Let $f(x) = x^3 - 16x $ 53) (2) Dees $f(4)$ exist? (3) Does $f(2)$ exist? (4) Determine all externs of f. 54) (2) Use Newtor's method to estimate the solutions of the equation $4x - 2x^2 + 3 = 0$. Store $16x + 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_4)$. 55) (3) Find the approximate values of r_1 through r_4 in the factorization $ex^4 - 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_4)$. 56) (3) Sint the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. (5) (6) If the derivative of an even function $f(x)$ is zero at $x = c$, can anything be said abou value of t' at $x = -2$ Give reasons for your answer. (5) (6) If the derivat	imate by using l'Hopital's rule. 58) of the 59) inter by using l'Hopital's rule. 60) 61) 61) 63) 63) imate by using l'Hopital's rule. 63) 63) imate by using l'Hopital's rule. 63) 0, m, 66)
Solve the problem. 51) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est 51) 58) $\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\sqrt{x}}$ 50) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum or local minimum variable function in a region large enough to show all these points simultar Add to your picture the graphs of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{x \to 0^+} x\sqrt{x}$ 52) Solve the problem. 63) $\lim_{x \to 0^+} x\sqrt{x}$ 54) (a) Does $f(0)$ exist? (b) Does $f(0)$ exist? (c) Does $f(0)$ exist? (d) Determine all externa of f. 54) (a) Eventor's method to estimate the solutions of the equation $4x - 2x^2 + 3 = 0$. Start = 1.5 for the right-hand solution and with $x_0 = -1$ for the solution on the left. The each case find x_2 . 55) (a) Eight-fance for the approximate values of r1 through r_4 in the factorization $6x^4 - 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_3)(x - r_4). 56) (b) Find the approximate values of r1 through r_4 in the factorization 6x^4 + 12x^3 - 7x^2 + 13x - 1 = 6(x - r_1)(x - r_2)(x - r_3)(x - r_4). 56) (c) Sinve that the function r(0) = 4 cot 9 + \frac{1}$	imate by using l'Hopital's rule. 58) of the 59) inee. 60) 61) 61) 61) 63) 63) 64) 65) 0, π). 66)
Solve the problem. 5) The graph below shows the position $s = f(t)$ of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?	51) Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 51) S0 lim $\frac{1}{\chi \to 0} \sin x - \frac{1}{\sqrt{\chi}}$ Solve the problem. S9) Find the inflection points (if any) on the graph of the function and the coordinates points on the graph where the function has a local maximum to local minimum vortices any point of the function's first and second derivatives. $y = x^3 - 15x^2$ Estimate the limit by graphing the function for an appropriate domain. Confirm your est Show each step of your calculation. 60) $\lim_{x \to 0^+} x\sqrt{\lambda}$ 52) Solve the problem. 61) $\lim_{x \to 0^+} x\sqrt{\lambda}$ 53) (a) Does f(0) exist? (b) Does f(0) exist? (b) Does f(4) exist? (c) Does f(-4) exist? (c) Does f(-4) exist? (d) Determine all extrem of f. (d) Determine all extrem of f. 54) (a) Sind the approximate values of r1 through r4 in the factorization extra exch as find x_2 . 55) (a) Sind the approximate values of r1 through r4 in the factorization extra exch as fite of your calculation. 60) $\lim_{x \to 0} \frac{x\sqrt{\lambda} - 2\sqrt{x^2 + 13x} - 1 = 6(x - r_1)(x - r_2)(x - r_4). 56) (c) If the derivative of an even function f(x) is zero at x = c, can anything be said abou value of t' at x = -c^2 Give reasons for your answer. 57) (b) Show that t$	imate by using l'Hopital's rule. 58) of the 59) inate by using l'Hopital's rule. 60) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 62) 63) 144 64) 155 156 63 156 156 63 157 158 159
<text><text><figure><figure><text><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></text></text></text></text></figure></figure></text></text>	51) Solve each step of your circulation. 51)	imate by using l'Hopital's rule. 58) of the 59) inate by using l'Hopital's rule. 60) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 61) 62) 63) 144 64) 155 156 157

Answer the question.	А	Answer the question.	
67) It took 26 seconds for the temperature to rise from 5° F to 140° F when a thermometer was taken from a freezer and placed in boiling water. Although we do not have detailed	67)	76) The function:	76)
knowledge about the rate of temperature increase, we can know for certain that, at some time, the temperature was increasing at a rate of $\frac{135}{26}$. F/sec. Explain.		$f(x) = \begin{cases} -3x & 0 \le x < 1\\ 0 & x = 1 \end{cases}$	
Provide an appropriate response.		is zero at $x = 0$ and $x = 1$ and differentiable on (0, 1), but its derivative on (0,1) is never zero. Does this example contradict Rolle's Theorem?	
68) Show that if $h > 0$, applying Newton's method to $f(x) = \begin{cases} \sqrt{x-8}, & x \ge 8 \end{cases}$	⁶⁸⁾ s	iolve the problem. 77) Use Newton's method to estimate the one real solution of $-3x^2 - 2x - 1 = 0$. Start with	77)
$[-\sqrt{8}-x, x<8]$		$x_1 = -0.5$ and then find x_2 .	
leads to $x_2 = h$ if $x_0 = h$ and to $x_2 = -h$ if $x_0 = -h$ when $0 < 8 < h$.	Р	rovide an appropriate response. 78) Which one is correct, and which one is wrong? Give reasons for your answers.	78)
69) A manufacturer uses raw materials to produce p products each day. Suppose that each delivery of a particular material is \$4 whereas the storage of that material is \$4 dollars per section of the storage of the	69)	(a) $\lim_{x \to 4} \frac{x-4}{x^2-4} = \lim_{x \to 4} \frac{1}{2x} = \frac{1}{8}$	·
unit stored per day. (One unit is the amount required to produce one product). How much should be delivered every x days to minimize the average daily cost in the production cycle between deliveries?		(b) $\lim_{X \to 4} \frac{x-4}{x^2-4} = \frac{0}{12} = 0$	
70) The function $y = \cot x - \frac{2\sqrt{3}}{3} \csc x$ has an absolute maximum value on the interval $0 < x < \pi$	70)	79) A student attempted to use l'Hôpital's Rule as follows. Identify the student's error.	79)
. Find it.		$\lim_{X \to \infty} \frac{\sin(1/x)}{e^{1/x}} = \lim_{X \to \infty} \frac{-x^{-2}\cos(1/x)}{-x^{-2}e^{1/x}}$	
Provide an appropriate response.		$= \lim_{X \to \infty} \frac{\cos(1/x)}{e^{1/x}} = \frac{1}{1} = 1$	
71) You plan to estimate π to five decimal places by using Newton's method to solve the equation cos x = 0. Does it matter what your starting value is? Give reasons for your answer	⁷¹⁾ s	iolve the problem.	
72) If $f(x) = (x - 3)^2$ and $g(x) = -\frac{1}{2}$, show that $\lim_{x \to 0^+} f(x)g(x) = -$	72)	80) Can anything be said about the graph of a function y = f(x) that has a second derivative that is always equal to zero? Give reasons for your answer.	80)
72) $\ln f(x) = (x - 3)^2$ and $g(x) = -\frac{1}{(x - 3)^2} x - 3$			
Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by Show each step of your calculation.	sing l'Hopital's rule.		
73) $\lim_{X \to \infty} \frac{x}{2^X}$	73)		
Solve the problem.	74)		
$f(x) = x^4 + bx^3 + cx^2 + dx + a = x^0$			
f(x) = ax + bx + bx + cx + cx + c. Must this function have at least one critical point? Give reasons for your answer. (Hint:			
Must f $f(x) = 0$ for some x?) How many local extreme values can f have?			
75) Imagine there is a function for which f'(x) = 0 for all x. Does such a function exist? Is it reasonable to say that all values of x are critical points for such a function? Is it reasonable to say that all values of x are extreme values for such a function. Give reasons for your	75)		
29		30	
27			
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and the filling along the dated lines. The base of the myrmelid is to a sense of the	81)	87) Use Newton's method to find the positive fourth root of 2 by solving the equation $x^4 - 2 = 0$. Start with $x_1 = 1$ and find x_2 .	87)
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in.	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the 	87)
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in.	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your nicture the graphs of the function's first and scond derivatives. 	87)
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. $12\sqrt{2}$ in.	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 	87)
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. x x x x x x x x x x	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 	87)
81) A square sheet of stiff paper measures $12\sqrt{2}$ in. by $12\sqrt{2}$ in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. $ \underbrace{\sum_{x \to x} x}_{12\sqrt{2} \text{ in.}} 12\sqrt{2} \text{ in.} $	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 	87) 88) 89)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: A square sheet of the pyramid problem of the pyramid pyramid	81)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function is a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. 	87) 88) 89) 90)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square below of the pyramid base of the pyram	81) P	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. 	87) 88) 89) 90) 91)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. 12√2 in. 12√2 in. 12 find the height of the pyramid as a function of x. 16 Find the volume of the pyramid as a function of x. 16 Find the walken of x possible volume of the pyramid and the value of x now hich it occurs. 	81) P	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule.	87) 88) 90) 91)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square bound of the pyramid a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid is to be a square base of the pyramid as a function of x. (a) Find the height of the pyramid as a function of x. (b) Find the maximum possible volume of the pyramid and the value of x for which it occurs. (b) Use Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. 	81) P 82) S	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. (x→0)/(x+x²) = lim (cosx)/(1+2x) = lim (-sinx)/2 = 0. where the problem. 	87) 88) 89) 90) 91)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average a square between the pyramid along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average a square between the pyramid a square between the pyramid as a function of x. bind the volume of the pyramid as a function of x. (a) Find the volume of the pyramid as a function of x. (b) Find the volume of the pyramid as a function of x. (c) Find the volume of the pyramid as a function of x. (c) Find the volume of the pyramid as a function of x. (c) Eventor's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. (a) Let f(x) = ¹/₂x³ - x² - 2x + 2. 	81) P 82) S 83)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = a + x / √b² + (a + x)² is an increasing function of x. 27 brovide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. lim sinx / x + x² = lim cosx / 1 + 2x = lim - sinx / 2 = 0. 80 Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = -0. Stort might-hand solution and with x₀ = -2 for the solution on the left. Then, in 	87) 88) 90) 91) 92)
 81) A square sheet of stiff paper measures 12√2 in by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. 1√√2 in. 12√2 in. 12√2 in. a) Find the height of the pyramid as a function of x. b) Find the volume of the pyramid as a function of x. c) Find the maximum possible volume of the pyramid and the value of x for which it occurs. 22) Use Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. 31) Let f(x) = ¹/₂x³ - x² - 2x + 2. a) Find the intervals on which the function is increasing. b) Find the intervals on which the function is increasing. 	81) P 82) S 83) S	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. 21 Yrovide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule.	87) 88) 90) 91) 92)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the pyramid is to be a square provided by the pyramid is to be a square provided by the pyramid is to be a square measuring x in. by x in. average the pyramid as a function of x. bind the volume of the pyramid as a function of x. c) Find the meight of the pyramid as a function of x. c) Find the volume of the pyramid as a function of x. d) Let f(x) = 1/2 x² - 2x + 2. a) Let f(x) = 1/2 x² - 2x + 2. a) Find the intervals on which the function is increasing. b) Find the intervals on which the function is increasing. c) Stech a graph of y = f(x) along with the line through ((2, f(x)) and (0, f(0)). 	81) P 82) S 83) S	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = a + x / √b² + (a + x)² is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. lim sinx / x + x² = lim cosx / 1 + 2x = lim - sinx / 2 = 0. siolve the problem. 92) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. 	87) 88) 90) 91) 92) 93)
 (a) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. Image: a square below, and the pyramid as a function of x. Image: a square below and the pyramid as a function of x. Image: a square below and the pyramid as a function of x. Image: a square below and the value of x for which it occurs. Image: a square below and the square bolow and the pyramid and the value of x for which it occurs. Image: a square below and the square bolow and the	81) P 82) S 83) S	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule.	87) 88) 90) 901) 91) 92) 93)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as a square below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as a function of x. bind the height of the pyramid as a function of x. find the noximum possible volume of the pyramid and the value of x for which it occurs. as the value of x for which it occurs. be Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. be Let (x) = 1/2 x² - 2x + 2. be Ind the intervals on which the function is increasing. be Steth a graph of y = f(x) along with the line through the (x_2) (x_1) and (0, i(0)). c) Find any values of c in the interval (-2, 0) that satisfy f(c) = (0/-(-2))/(0(-2)) 	81) P 82) S 83) S sing l'Hopital's rule.	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = a + x / √b² + (a + x)² is an increasing function of x. 20) Show that g(x) = lim (cosx) / (1 + 2x) = 2 / (1 + 2	87) 88) 90) 90) 91) 92) 93)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. and the four of the pyramid as a function of x. b) Find the height of the pyramid as a function of x. c) Find the wolume of the pyramid as a function of x. c) Find the narrow possible volume of the pyramid and the value of x for which it occurs. 20) Use Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. and the value of x for which it doccurs. and the intervals on which the function is increasing. b) Find the intervals on which the function is decreasing. c) Find the intervals on which the function is decreasing. c) Find the intervals on which the function is decreasing. c) Find any values of c in the interval (-2, 0) that satisfy the (-2, (-2)) = (-2)	81) P 82) S 83) S ing l'Hopital's rule. 84) [87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule.	87) 88) 89) 90) 91) 92) 93) 94)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. as the pyramid is to be a square provided by the pyramid is to be a square measuring x in. by x in. as the pyramid is to be a square provided by the pyramid is to be a square measuring x in. by x in. as the pyramid is to be a square provided by the pyramid as a function of x. as find the height of the pyramid as a function of x. bind the wolue of the pyramid as a function of x. chind the maximum possible volume of the pyramid and the value of x for which it occurs. as the value of x for which it occurs. bind the intervals on which the function is increasing. bind the intervals on which the function is increasing. chied the intervals on which the function is decreasing. chied and y alues of c in the interval (-2, 0) that satisft f(c) = (0 - (-2)) = (0 - (-2)) = (0 - (-2)). Statisticate the limit by graphing the function for an appropriate domain. Confirm your estimate by succed step of your calculation.	81) P 82) S 83) S sing l'Hopital's rule. 84)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (a + x)/(y² + (a + x)²) is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. (x - y)/(x + x²) = lim (-sinx)/(1 + 2x) = 0. Provide the problem. 92) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. 93) Give reasons for your answers. Let f(x) = (x - 8)²/3 (a) Does f(8) exist? (b) Show that the only local extreme value of f occurs at x = 8. (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x) = (x - c)²/3. 94) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sels for 54, so the company's revenue in dollars for x units sold is R(x) = 4x. The company's cost in dollars to produce x when the torus tool area on the solution on the left or the negative or solve the torus tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sels for 54, so the company's revenue in dollars for x units sold is R(x) = 4x. The company's cost in dollars to prod	87) 88) 90) 90) 91) 92) 93) 94)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the dotted lines. The base of the pyramid is to be a square measure of the pyramid the four the pyramid as a function of x. find the height of the pyramid as a function of x. find the noimme of the pyramid as a function of x. find the noimme of the pyramid as a function of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. a) Let f(x) = 1/2 √2 - 2x + 2. a) Inter f(x) = 1/2 √3 - 2/2 - 2x + 2. a) Find the intervals on which the function is increasing. b) Event sympthet of y = (x) along with the line through (x_2)(x_2) and (0, i(0)). c) Find noise of c in the interval (-2, 0) that satisfy f(x) = 1/0 - (-2) Determine the limit by graphing the function for an appropriate domain. Confirm your estimate by the over each streas of x = 0 - (-2) Answer the question. (a) suppose that g(0) = -5 and that g'(t) = -4 for all t. Must g(t) = -4t - 5 for all t?	81) P 82) S 83) S ing l'Hopital's rule. 84) 85)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = ^{a + x}/_{√b² + (a + x)²} is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. lim ^{sinx}/_{x→0} ^{sinx}/_{x→2} = lim ^{cosx}/_{1+2x} = lim ^{-sinx}/₂ = 0. Solve the problem. 92) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. 93) Give reasons for your answers. Let f(x) = (x - 8)^{2/3} (a) Does f⁴(8) exist? (b) Show that the only local extreme value of f occurs at x = 8. (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x) = (x - c)^{2/3}. 94) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sells for \$4, so the company's revenue in dollars for x units sold is R(x) = 4x. Theoremany's cost in dollars to produce x tools can be modeled as C(x) = 299 + 305^{3/6}. Use Newton's method to find the break-even point for the company (that is, find x such that C(x) = R(x)). Use x = 370 as your initial mores and ebow at 10 your unot. 	87) 88) 90) 90) 91) 92) 93) 94)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the square base of the pyramid as 12√2 in. 12√2 in. 12√2 in. (a) Find the beight of the pyramid as a function of x. (b) Find the volume of the pyramid as a function of x. (c) Find the volume of the pyramid as a function of x. (c) Find the volume of the pyramid as a function of x. (d) Find the volume of the pyramid as a function of x. (e) Find the volume of the pyramid as a function of x. (f) Find the volume of the pyramid as a function of x. (f) Find the volume of the pyramid as a function of x. (g) Luce Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. (g) Let (x) = ¹/₂ x³ - x² - 2x + 2. (h) Find the intervals on which the function is increasing. (i) Find the intervals on which the function is increasing. (i) Find the intervals on which the function is increasing. (j) Find any volues of c in the interval (-2, 0) that satisfy t²(c) = ^{f(0)}/₀ - ^{f(2)}/₀ - ⁽²⁾/₀ - ⁽²⁾/₀ - ⁽²⁾/₀. Extende the limit by graphing the function for an appropriate domain. Confirm your estimate by the volue each step of your calculation. 81 suppose that g(0) = -5 and that g ⁴ (t) = -4 for all t. Must g(t) = -4t - 5 for all t? Store the problem. 81 The position of a particle moving along the x-axis is given by x ₁ (t) = -cq(n ²) for 0 ≤ t ≤ 3.	81) P 82) S 83) S 83) S 11Hopital's rule. 84) 85) 85) 86) 1	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. \$\vec{y} = x⁵ - 4x⁴ - 200\$ 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = \$\frac{a + x}{\sqrt{b^2 + (a + x)^2}}\$ is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. \$\lim_{x + 0} \frac{\sin x_{+ 2}}{x + 2} = \lim_{x - 0} \frac{\sin x_{+ 2}}{1 + 2x} = \lim_{x - 0} \frac{-2}{2} = 0\$. Provide Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. 92) Give reasons for your answers. Let f(x) = (x - 8)^{2/3} (a) Does ff(8) exist? (b) Show that the only local extreme value of f occurs at x = 8. (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x) = (x - c)^{2/3}. 94) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sets in dollars to produce x tools can be modeled as C(x) = 299 + 30x⁵/8. Use Newton's method to find the brack-even point for the company (that is, find x such that C(x) = R(x)). Use x = 370 as your initial guess and show all your work. 	87) 88) 90) 90) 91) 92) 93) 94)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in. A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the pyramid is to be a square measure 12√2 in the pyramid is to be a square measuring x in. by x in. average the pyramid is to be a square measure 12√2 in. 12√2 in. 12√2 in. a) Find the height of the pyramid as a function of x. b) Find the volue of the pyramid as a function of x. c) Find the volue of the pyramid as a function of x. c) Find the volue of the pyramid as a function of x. c) Find the volue of the pyramid as a function of x. d) Find the volue of the pyramid as a function of x. e) Find the volue of the pyramid as a function of x. e) Find the volue of x for which it occurs. e) Use Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. e) Let f(x) = 1/2x³ - x² - 2x + 2. e) Find the intervals on which the function is increasing. e) Statch a graph of y = f(x) along with the line through (-2, f(-2)) and (0, f(0)). find any values of c in the interval (-2, 0) that satisfy f(c) = (0 - f(-2)) Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by the x _n → 0 1 1 - cox x x = 0. Estimate the question. (a) The position of a particle moving along the x-axis is given by x(0 = -cs(πt ²) for 0 ± 1 ± 3. (b) Care the proticle's coordenvirue are a function of f. (c) Give the proticle's as a function of f.	81) P 82) S 83) S sing l'Hopital's rule. 84) 85) 86)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in are geiong to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. y = x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 90) Show that g(x) = (x + x)/(y² + (a + x)²) is an increasing function of x. 20) Show that g(x) = (x + x)/(y² + (a + x)²) is an increasing function of x. 21) Find the error in the following incorrect application of L'Hopital's Rule. (x + x²) = x + x² = lim (x + x)/(x + x) = 0. 22) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. (a) Does f(8) exist? (b) Show that the only local extreme value of f occurs at x = 8. (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x) = (x - Q²/3. (e) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sets for \$4, so the company's revenue in dollars for x units sold is R(x) = 4x. The company's cost in dollars to produce x tools can be modeled as C(x) = 299 + 3005^{3/8}. Use Newton's method to find the break-even point for the company (that is, find x such that C(x) = R(x)). Use x = 370 as your initial guess and show all your work. 	87) 88) 90) 90) 91) 92) 93) 94)
 81) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. average the pyramid is to be a square measure 12√2 in the pyramid is to be a square measuring x in. by x in. average the pyramid as a function of x. b) Find the height of the pyramid as a function of x. c) Find the maximum possible volume of the pyramid as a function of x. c) Find the maximum possible volume of the pyramid and the value of x for which it occurs. d) Let f(x) = 1/2 √2 + 2 + 2. a) Let f(x) = 1/2 √2 - 2x + 2. a) Find the intervals on which the function is increasing. b) Find the intervals on which the function is increasing. c) Find the intervals on which the function is increasing. c) Such a grave of y = f(x) along with the line through (-2, f(-2)) and (0, f(0)). c) Find any values of c in the interval (-2, 0) that satisfy f(c) = 1/0 - (-2) Answer the question. a) Suppose that g(0) = -5 and that g'(t) = -4 for all t. Must g(t) = -4t - 5 for all t? Sive the problem. a) Cave the particle moving along the x-axis is given by x(t) = -co(πt²) for 0 ≤ t ≤ 3. c) Grow the particle's velocity as a function of t. c) For what values of t is the particle moving to the right? f) Find tha cell cont of x = 4 function of t. f) Find the particle moving along the x-axis is given by f(0) = for what values of t is the particle noving to the right? 	81) P 82) S 83) S 83) S 84) 85) 86) 1	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph the function has a local maximum or local minimum value. Then graph the function is a region large enough to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. <i>y</i>=x⁵ - 4x⁴ - 200 89) How many solutions does the equation cos 4x = 0.95 - x² have? 80) Show that g(x) = ^{A + X}/_{0² + (a + x)²} is an increasing function of x. 210) Find the error in the following incorrect application of L'Hopital's Rule. Im ^{sinx}/_{x→0} ^{sinx}/_{x→2} = lim ^{cosx}/_{x→0} ^{-sinx}/₂ = 0. 20) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. (a) Does f⁴(8) exist? (b) Show that the only local extreme value of f occurs at x = 8. (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x) = (x - c)^{2/3}. (e) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sets in edollars to produce x tools can be modeled as C(x) = 29 + 30x^{5/8}. Use Newton's method to find the Extreme Value Theorem? (a) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining ceramic components. Each milling tool sets in dollars to produce x tools can be modeled as C(x) = 299 + 30x^{5/8}. Use Newton's method to find the break-even point for the company (that is, find x such that C(x) = R(x)). Use x = 370 as your initial guess and show all your work. 	87) 88) 90) 90) 91) 92) 93) 94)
 (a) A square sheet of stiff paper measures 12√2 in. by 12√2 in., so the diagonals measure 24 in A pyramid is to be created by removing the four congruent shaded triangles shown below, and then folding along the dotted lines. The base of the pyramid is to be a square measuring x in. by x in. (a) Find the four part of the pyramid as a function of x. (b) Find the beight of the pyramid as a function of x. (c) Find the beight of the pyramid as a function of x. (c) Find the volue of the pyramid as a function of x. (c) Find the volue of the pyramid as a function of x. (c) Find the volue of the pyramid as a function of x. (c) Find the volue of the pyramid as a function of x. (c) Find the nour me of the pyramid as a function of x. (c) Find the nour of the pyramid as a function of x. (c) Find the maximum possible volume of the pyramid and the value of x for which it occurs. (c) Even Newton's method to estimate the one real solution of 3x³ - 2x - 1 = 0. Start with x₁ = 1 and then find x₂. (c) Let (x) = 1/2 x² - 2 x + 2. (c) Let (x) = 1/2 x² - 2 x + 2. (c) Stacth a graph of y = f(x) along with the line through (2, (2)) and (0, f(0)). (c) Stacth a graph of y = f(x) along with the line through (2, (2)) and (0, f(0)). (c) Find the intervals on which the function is increasing. (c) Let a x = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81) P 82) S 83) S 83) S 84) 85) 86)	 87) Use Newton's method to find the positive fourth root of 2 by solving the equation x⁴ - 2 = 0. Start with x₁ = 1 and find x₂. 88) Find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph the function has a local maximum or local minimum value. Then graph the function in are geiong to show all these points simultaneously. Add to your picture the graphs of the function's first and second derivatives. \$\sum = x⁵ - 4x⁴ - 200\$ 89) How many solutions does the equation cos 4x = 0.95 - x² have? 80) Show that g(x) = \$\frac{a + x}{\sqrt{b^2 + (a + x)^2}}\$ is an increasing function of x. Provide an appropriate response. 91) Find the error in the following incorrect application of L'Hopital's Rule. \$\mim_{x + 0}^2 = \frac{x + x}{2} = \frac{\mim_x}{1 + 2x} = \frac{\mim_x}{2 + 0} = 0.\$ Solve the problem. 92) Use Newton's method to estimate the solutions of the equation -3x² - 2x + 5 = 0. Start with x₁ = 0.5 for the right-hand solution and with x₀ = -2 for the solution on the left. Then, in each case find x₂. 93) Give reasons for your answers. Let f(x) = \$\left(x) = 1\left(x) = \left(x - c)^2 / 3\$. 94) Marcus Tool and Die Company produces a specialized milling tool designed specifically for machining eeramic components. Each milling tool sells for \$4\$, so the company's revenue in dollars for x units sold is f(x) = \$x\$. The company's cost in dollars to produce x tools can be modeled as C(x) = 29 + 305⁵/8. Use Newton's method to produce x tools can be modeled as C(x) = 29 + 305⁵/8. Use Newton's method to find the break-even point for the company in x units add is f(x) = \$x\$. The company's cost in dollars to produce x tools can be modeled as C(x) = 29 + 305⁵/8. Use Newton's method to find the break-even point for the company (that is, find x such that C(x) = R(x)). Use x = 370 as your initial guess and show all your work. <!--</td--><td>87) 88) 90) 90) 91) 92) 93) 94)</td>	87) 88) 90) 90) 91) 92) 93) 94)

D) Local minimum: (-4,-1)		Find a value of a so that f is con $\int 16x - 4 \sin 4x$	ntinuous at c, or indicate th	is is impossible.		
Inflection point: (0,0)		147) $f(x) = \begin{cases} \frac{10x - 4 \sin 4x}{3x^3} \end{cases}$	-, x≠0			147)
_ 1 y		(c,	x = 0 B) 16	$(1)\frac{128}{128}$	D) <u>32</u>	
		190	b) 10	C) <u>9</u>	$D_{j} = \frac{1}{9}$	
		Solve the problem.				149)
↔		body's position at tim	ne t.	moving along a coordi	nate inte at time t, find the	148)
		$v = \cos\frac{\pi}{2}t, s(0) = 1$				
		A) $s = \frac{2}{\pi} \sin \frac{\pi}{2} t$	B) $s = \frac{2}{\pi} \sin \frac{\pi}{2} t + \pi$	C) s = sin t	D) $s = 2\pi \sin \frac{\pi}{2}t$	
Solve the problem.	144)	149) A small frictionless ca and released at time t	art, attached to the wall by a t = 0 to roll back and forth fo	1 spring, is pulled 10 cm or 4 sec. Its position at t	h back from its rest position ime t is	149)
144) A rectangular field is to be enclosed on four sides with a fence. Fencing costs≽2 per foot for two opposite sides, and \$5 per foot for the other two sides. Find the dimensions of the field of area610	144)	$s = 1 - 10 \cos \pi t$. Wha magnitude of of the a	t is the cart's maximum spee acceleration then?	ed? When is the cart mo	oving that fast? What is the	
ft ² that would be the cheapest to enclose. A) 9.9 ft @ \$2 by 61.7 ft @ \$5 B) 39.1 ft @ \$2 by 15.6 ft @ \$5		A) $10\pi \approx 31.42 \text{ cm/s}$	sec; t = 0.5 sec, 2.5 sec; accele	eration is 1 cm/sec ²		
C) 61.7 ft @ \$2 by 9.9 ft @ \$5 D) 15.6 ft @ \$2 by 39.1 ft @ \$5		B) 10π ≈ 31.42 cm/s C) 10π ≈ 31.42 cm/s	sec; t = 0.5 sec, 1.5 sec, 2.5 sec sec; t = 0 sec, 1 sec, 2 sec, 3 se	c, 3.5 sec; acceleration is 0 cm	s 0 cm/sec- /sec ²	
Use a computer algebra system (CAS) to solve the given initial value problem.		D) $\pi \approx 3.14$ cm/sec;	t = 0.5 sec, 1.5 sec, 2.5 sec, 3.	.5 sec; acceleration is 0	cm/sec ²	
145) $y' = \frac{12(1-x^2)}{1+x^2}, y(0) = 4$	145)	Find the most general antideriv	vative.			
A) $y = 13 \tan^{-1} x - x + 4$ B) $y = 12 \ln \left(\frac{x+1}{1-1} \right) - 12x + 4$		150) $\int \frac{\sec \theta}{\sec \theta - \cos \theta} d\theta$				150)
$\begin{bmatrix} x - 4 \\ 0 \end{bmatrix} = 24 \tan^{-1} x - 12x + 4$		A) $\cos^2 \theta + C$	B) $\cot \theta + C$	C) -cot θ + C	D) θ + tan θ + C	
C) $y = 2\pi \tan^{-1} x - 12x$		Use l'Hopital's Rule to evaluate	e the limit.			
Solve the problem.	146)	151) $\lim_{x \to -\infty} \frac{\cos x - \frac{1}{2}}{-}$				151)
readway that can be upgraded 50 mi south of the line connecting the two villages. The cost of	140)	$x \rightarrow \frac{\pi}{3}$ $x - \frac{\pi}{3}$				
upgrading the existing roadway is \$300,000 per mile, whereas the cost of constructing a new highway is \$500,000 per mile. Find the combination of upgrading and new construction that		A) - $\sqrt{3}$	B) $-\frac{\sqrt{3}}{2}$	C) $\frac{\sqrt{2}}{2}$	D) $\frac{\sqrt{3}}{2}$	
minimizes the cost of connecting the two villages.			2	2	2	
150 mi A B		Solve the problem.	icle (in <u>ft</u>) is given by	= 5t + 2 where the th-	time (in seconde) for which	152)
· · · · · · · · · · · · · · · · · · ·		it has traveled. Find t	the time at which the velocity	v is at a minimum	une (in seconds) for which	132)
		A) 1 s	B) 5 s	C) 2.5 s	D) 2 s	
50 mi		Find all possible functions wit	h the given derivative.			
upgrad able roadway		153) $y' = 6x^2 + 1$	\mathbf{P}) 12x + C	C $x + C$	$D) 2x^{3} + C$	153)
A) \$86,285,146 B) \$85,000,000 C) \$87,285,146 D) \$83,714,854		N) 2X + X + C	b) 12x + C	CIXIC	0,22 + C	
49				50		
Find the largest open interval where the function is changing as requested.		Use Newton's method to estim	ate the requested solution o	of the equation. Start v	vith given value of x0 and t	hen give x ₂ a
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) (- ∞ , 0) B) (-3, 0) C) (-3, 3) D) (3, ∞)	154)	Use Newton's method to estim the estimated solution. $161) -x^2 + 4x - 1 = 0; x_0 = 1$	ate the requested solution of the solution of	of the equation. Start v	vith given value of x ₀ and t	hen give x ₂ a 161)
Find the largest open interval where the function is changing as requested. 154) Increasing y = (x ² - 9) ² A) (-∞, 0) B) (-3, 0) C) (-3, 3) D) (3, ∞) Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva	154) L	Use Newton's method to estim the estimated solution. $161) -x^2 + 4x - 1 = 0; x_0 = 0$ A) 0.25	ate the requested solution o 0; Find the left–hand solutio B) 0.23	of the equation. Start v m. C) -0.33	vith given value of x ₀ and t D) 0.14	hen give x ₂ a
 Find the largest open interval where the function is changing as requested. 154) Increasing y = (x² - 9)² A) (-∞, 0) B) (-3, 0) C) (-3, 3) D) (3, ∞) Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) f(x) = x^{1/3}, [-1,1] 	154) 1. 155)	Use Newton's method to estim the estimated solution. 161) -x ² + 4x -1 = 0; x ₀ = 0 A) 0.25 Find the extreme values of the	ate the requested solution o 0; Find the left–hand solutio B) 0.23 function and where they oc	of the equation. Start v n. C) -0.33 ccur.	vith given value of x ₀ and t D) 0.14	hen give x₂ a 161)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes	154) I. 155)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 0$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$	ate the requested solution o 0; Find the left-hand solutio B) 0.23 function and where they or	of the equation. Start v n. C) -0.33 ccur.	vith given value of x ₀ and t D) 0.14	hen give x ₂ a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sin^2 x) dx$	154) I 155)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 0$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is	ate the requested solution of 0; Find the left-hand solutio B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is	of the equation. Start w m. C) -0.33 ccur. - 1 at x = -2.	vith given value of x ₀ and ti D) 0.14	hen give x ₂ a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $x^7 \cot x + C$ B) $= 7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{2} + C$	154) 1. 155) 156)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None	ate the requested solution of 0; Find the left-hand solution B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is	n. C) -0.33 ccur. - 1 at x = -2.	vith given value of x ₀ and t	hen give x ₂ a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$	154) 1. 155) 156)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is	ate the requested solution of 0; Find the left-hand solutio B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $s - \frac{1}{3}$ at x = 0; the minimum	of the equation. Start v n. C) -0.33 ccur. - 1 at x = -2. is 1 at x = -2.	vith given value of x ₀ and t	hen give x2 a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1	154) I. 155) 156) coal extrema.	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 0$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is	ate the requested solution of 0; Find the left-hand solutio B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $s - \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is	of the equation. Start v m. C) -0.33 ccur. - 1 at x = -2. is 1 at x = -2. $\frac{1}{3}$ at x = -2.	vith given value of x ₀ and t D) 0.14	hen give x ₂ a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616	154) L 155) 156) ocal extrema. 157)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 0$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is	ate the requested solution of 0; Find the left-hand solutio B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $s - \frac{1}{3}$ at x = 0; the minimum is at x = 0; the minimum is	of the equation. Start v C) -0.33 ecur. - 1 at x = -2. is 1 at x = -2. $\frac{1}{3}$ at x = -2.	vith given value of x ₀ and t D) 0.14	hen give x ₂ a 161) 162)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.461 B) Approximate local maximum at 1.75; approximate local minima at -6.704 and 12.447 (c) Amperiative local maximum at 1.75; approximate local minima at -6.77 and 12.447	154) 1. 155) 156) ocal extrema. 157)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is D) the maximum is Determine the location of each 163) $f(x) = -x^3 - 45x^2 - 6x$	ate the requested solution of (); Find the left-hand solution (); B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is () at x = 0; the minimum is () local extremum of the func- + 2	of the equation. Start v (C) -0.33 (C) -0.	vith given value of x ₀ and t D) 0.14	hen give x ₂ a 161) 162) 163)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.777 and 12.542	154) 1. 155) 156) ocal extrema. 157)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum	ate the requested solution of (); Find the left-hand solution (); Find the left-hand solution () 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is () $\frac{1}{3}$ at x = 0; the minimum is = 0; t	of the equation. Start v (C) -0.33 (C) -0.33 (C) -1 at x = -2. is 1 at x = -2. is 1 at x = -2. is 1 at x = -2. ction.	vith given value of x ₀ and t	hen give x ₂ a 161) 162) 163)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.771 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.771 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.771 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.791 and 0.069 Find the derivative at each critical point and determine the local extreme values.	154) 155) 156) ocal extrema. 157)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum	ate the requested solution of (); Find the left-hand solution (); Find the left-hand solution () 0.23 function and where they of () $\frac{1}{3}$ at $x = 0$; the minimum is $\frac{1}{3}$ at	of the equation. Start v (C) -0.33 (C) -0.33 (C) -1 at $x = -2$. (c) at $x = -2$	vith given value of x ₀ and t	hen give x ₂ a 161) 162) 163)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.791 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.813 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(y^2 - 4); x \ge 0$ A) B	154) 155) 156) ocal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum C) Local maximum D) Local maximum	ate the requested solution of B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $3 - \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is - 1 at x = 0; the minimum is - 2 local extremum of the funct + 2 at -2; local minimum at -1 at -1; local minimum at -2 at 1; local minimum at 2	of the equation. Start v (C) -0.33 (C) -0.33 (C) -1 at $x = -2$. is 1 at $x = -2$. $\frac{1}{3}$ at $x = -2$. (c) -1.32 (c) -0.33 (c) -0.3	vith given value of x ₀ and t	hen give x ₂ a 161) 162) 163)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.81; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.774 and 12.447 C) Approximate local maximum at 1.781; approximate local minima at -6.774 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.813 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) Critical Pt-Iderivative Extremum [Value] B) Critical Pt-Iderivative Extremum [Value]	154) 155) 156) ocal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 45x^2 - 6x$ A) Local maximum B) Local maximum C) Local maximum D) Local maximum D) Local maximum D Local	ate the requested solution of B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $s = \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is local extremum of the funct + 2 at -2; local minimum at -1 at -2; local minimum at -2 at 1; local minimum at 2 at the requested solution of	of the equation. Start v (C) -0.33 (C) -0.33 (C) -1 at $x = -2$. is 1 at $x = -2$. $\frac{1}{3}$ at $x = -2$. ction. of the equation. Start v	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t	hen give x2 a 161) 162) 163) 163)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^4 + 59x + 14$ A) Approximate local maximum at 1.81; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.704 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.774 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.774 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.713 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) $\frac{Critical Pt_1 derivative [Extremum] Value}{x = 0}$ B) $\frac{Critical Pt_1 derivative [Extremum] Value}{x = 0}$ B) $\frac{Critical Pt_1 derivative [Extremum] Value}{x = 0}$ Didefined $\frac{local max}{x = 1}$ Didefined $\frac{local max}{x = 1}$	154) 155) 156) pcal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum C) Local maximum D) Local maximum Use Newton's method to estim the estimated solution. 164) $x^4 - 3 = 0$; $x_0 = 1$; Fir	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $s - \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum s 3 at x = 0; the minimum is local extremum of the funct + 2 at -2; local minimum at -1 at 2; local minimum at 2 at 1; local minimum at 2 at the requested solution of the megative solution.	of the equation. Start v (C) -0.33 (C) -0.33 (C) -1 at $x = -2$. is 1 at $x = -2$. $\frac{1}{3}$ at $x = -2$. ction. of the equation. Start v	vith given value of x ₀ and t D) 0.14	hen give x ₂ a 161) 162) 163) hen give x ₂ a 164)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.731; approximate local minima at -6.774 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.813 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) $\frac{Critical Pt. [derivative [Extremum] Value}{x = 1}$ D) $\frac{B}{0}$ $\frac{Critical Pt. [derivative Extremum] Value}{x = 1}$ $\frac{B}{0}$ $\frac{Critical Pt. [derivative] Extremum}{minimum} -3}$	154) 1. 155) 156) pcal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum D) Local maximum D) Local maximum D) Local maximum Local maximum D) Local maximum D) L	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is at x = 0; the minimum is $\frac{1}{3$	of the equation. Start v of the equation. Start v (C) -0.33 ccur. -1 at $x = -2$. is 1 at $x = -2$. $\frac{1}{3}$ at $x = -2$. ction. of the equation. Start v (C) 1.33	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32	hen give x2 a 161) 162) 163) 163) hen give x2 a 164)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^{3-1}5x^2 + 59x + 14$ A) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.73; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.73; approximate local minima at -6.704 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.713 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) $\frac{Critical Pt. derivative [Extremum] Value}{x = 1}$ D $\frac{Critical Pt. derivative [Extremum] Value}{x = 1}$ D $\frac{Critical Pt. derivative [Extremum] Value}{x = 0}$ $\frac{Critical Pt. derivative}{x = 0}$ $Critical Pt. derivative$	154) 1 155) 156) ocal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = t$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D the maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum D) Local maximum	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{2}$ at x = 0; the minimum i	of the equation. Start v (C) -0.33 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32	hen give x ₂ a 161) 162) 163) hen give x ₂ a 164) 165)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^{3-1}5x^2 + 59x + 14$ A) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.78; approximate local minima at -6.691 and 12.616 D) Approximate local maximum at 1.78; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.78; approximate local minima at -6.691 and 10.69 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) Critical Pt. [derivative [Extremum] Value $\frac{x = 0}{x = 1}$ 0 minimum $ -3$ B) Critical Pt. [derivative [Extremum] Value $\frac{x = 0}{x = 0}$ Undefined [local max] 2 $x = 1$ 0 $\frac{1}{10}$ minimum $ -3$	154) 1 55) 156) 0cal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = t$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D the maximum is D the maximum b) Local maximum B) Local maximum C) Local maximum D) Local maximum	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is (local extremum of the func- + 2) local minimum at -1 at -2; local minimum at -1 at -1; local minimum at 2 at -1; local minimum at -1; local mi	of the equation. Start v 	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x ₂ a 161) 162) 163) hen give x ₂ a 164) 165)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.75; approximate local minima at -6.77 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.77 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.77 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.813 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^2/3(x^2 - 4); x \ge 0$ A) Critical Pt. [derivative [Extremum [Value] $\frac{x = 0}{x = 1}$ 0 minimum $\frac{1}{3}$ C) Critical Pt. [derivative [Extremum [Value] $\frac{x = 0}{x = 1}$ 0 minimum $\frac{1}{3}$ Find a value of a so that f is continuous at c. or indicate this is impressible	154) 155) 156) ocal extrema. 157) 158)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum D) Local maximum D) Local maximum D) Local maximum Use Newton's method to estim the estimated solution. 164) $x^4 - 3 = 0$; $x_0 = 1$; Fir A) 1.29 165) $x^3 + 5x + 2 = 0$; $x_0 = -$ A) -0.38 Sketch the graph and show all 166) $(x) = 2x^3 - 15x^2 + 24$	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is 3 at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{2}$ at $x = 0$; the minimum is $\frac{1}{2}$ iocal minimum at -1 at 2 ; local minimum at 2 at -1 ; local minimum at 2 at 1 ; local minimum at 2 at 1 ; local minimum at 2 at the requested solution of the megative solution. B) 1.31 -1; Find the one real solution B) -0.44 local extrema and inflection	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -1 at x = -2. (C) 1 at x = -2. (C) 1.33 (C) -0.39 n points.	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.753; approximate local minima at -6.691 and 12.512 D) Approximate local maximum at 1.733; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.731; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781 ; approximate local minima $x - 6.777$ and 12.542 D) Approximate local maximum $x = 1.781$; approximate local minima $x - 6.777$ and 12.542 D) Approximate local maximum $x = 1.781$; approximate local minima $x - 6.777$ and 12.542 D) Approximate local maximum $x = 1.781$; approximate local minima $x - 6.777$ and 12.542 D) Approximate local maximum $x = 1.781$; approximate local minima $x = -6.717$ and 12.542 D) $\frac{Critical Pt}{x = 0}$ $\frac{Critical Pt}{maximum}$ $\frac{1}{-3}$ $\frac{Critical Pt}{x = 1}$ $\frac{1}{0}$ $\frac{1}{minimum}$ $\frac{1}{-3}$ $\frac{1}{x = 1}$ $\frac{1}{0}$ $\frac{1}{minimum}$	154) 155) 156) 156) 158) 158) 1589 1599	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0; x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is D) The maximum is D the maximum is D the maximum is D tocal maximum B) Local maximum D) Local maximum D) Local maximum Use Newton's method to estim the estimated solution. 164) $x^4 - 3 = 0; x_0 = 1;$ Fir A) 1.29 165) $x^3 + 5x + 2 = 0; x_0 = -$ A) -0.38 Sketch the graph and show all 166) $f(x) = 2x^3 - 15x^2 + 24$	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is 3 at x = 0; the minimum is 3 at x = 0; the minimum is 1 occal extremum of the funct + 2 at -2; local minimum at -1 at 2; local minimum at -2 at 1; local minimum at 2 at 1; local minimum at 2 at the requested solution. B) 1.31 -1; Find the one real solution B) -0.44 local extrema and inflection x	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x ₂ a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.794 and 12.616 B) Approximate local maximum at 1.73; approximate local minima at -6.797 and 12.542 D) Approximate local maximum at 1.73; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.73; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.73; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.777 and 12.542 D) Approximate local maximum at 1.781; approximate local minima at -6.777 and 12.542 D) Approximate local maximum -781 (-71) (-71) (-71) (-71) (-72) (-72) (-71) (-72)	154) 155) 156) ocal extrema. 157) 158) 159)	Use Newton's method to estim the estimated solution. $161) - x^2 + 4x - 1 = 0; x_0 = 4$ A) 0.25 Find the extreme values of the $162) y = \frac{x + 1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is D) The maximum is Determine the location of each 163) f(x) = -x^3 - 4.5x^2 - 6x A) Local maximum B) Local maximum B) Local maximum D) Local maximum D) Local maximum D) Local maximum D) Local maximum 164) x^4 - 3 = 0; x_0 = 1; Fir A) 1.29 165) x^3 + 5x + 2 = 0; x_0 = - A) -0.38 Sketch the graph and show all 166) f(x) = 2x^3 - 15x^2 + 24	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $3 = \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is 3 at x = 0; the minimum is 4 c) the minimum at -1 at 2; local minimum at -1 at 2; local minimum at -2 at 1; local minimum at -2 at 2; local minimum at -2 at 3; local minimum at -2 at 4; local extrement and inflection x	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -1 at x = -2. (C) 1 at x = -2. (C) 1.33 (C) -0.39 (C) -0.33 (C) -0.39 (C)	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.73; approximate local minima at -6.704 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.771 and 12.542 D) Approximate local maximum at 1.73; approximate local minima at -6.771 and 12.542 D) Approximate local maximum at 1.73; approximate local minima at -6.791 and 12.616 B) $x = \frac{1}{0}$ $\frac{1}{0}$ 1	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0; x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is Determine the location of each 163) f(x) = $x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum D) Local maximum D) Local maximum D) Local maximum D) Local maximum 164) $x^4 - 3 = 0; x_0 = 1;$ Fir A) 1.29 165) $x^3 + 5x + 2 = 0; x_0 = -A) - 0.38$ Sketch the graph and show all 166) f(x) = $2x^3 - 15x^2 + 24$	ate the requested solution of B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $s - \frac{1}{3}$ at x = 0; the minimum is 3 at x = 0; the minimum is 3 at x = 0; the minimum is 4 c) the minimum at -1 at -2; local minimum at -1 at -2; local minimum at -2 at 1; local minimum at -2 at 0; local 0; loca	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0.33 (C) -0.39 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) hen give x2 a 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-\infty, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(x) = x^{1/3}$ [-1,1] A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.73; approximate local minima at -6.794 and 12.616 B) Approximate local maximum at 1.73; approximate local minima at -6.794 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.794 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.794 and 12.447 C) Approximate local maximum at 1.73; approximate local minima at -6.794 and 12.447 C) Approximate local maximum at 1.781; approximate local minima at -6.813 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) Critical Pt. derivative [Extremum] Value $\frac{x=0}{x=1}$ 0 minimum $ -3$ C) Critical Pt. derivative [Extremum] Value $\frac{x=0}{x=1}$ 0 minimum $ -3$ D) Critical Pt. derivative [Extremum] Value $\frac{x=0}{x=1}$ 0 minimum $ -3$ Find a value of a so that f is continuous at c, or indicate this is impossible. 159) Let $\{0; = (\sin x)^3, x x^0, 0$. Extend the definition of f to $x = 0$ so that the extended function is continuous there. A) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ e, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0, 0 \\ -1, x=0 \end{cases}$ D) $f(x) = \begin{cases} (\sin x)^3, xx^0,$	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is D thermain the location of each 163) $f(x) = -x^3 - 45x^2 - 6x$ A) Local maximum D) Local maximum D	ate the requested solution of B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{2}$ local extremum of the func- $\frac{1}{2}$ local minimum at -1 at -2; local minimum at -2 at 1; local minimum at -2 at 1; local minimum at 2 at the requested solution of the negative solution. B) 1.31 -1; Find the one real solution B) -0.44 local extrema and inflection x	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0.33 (C) -0.39 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x ₂ a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-x, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interva 155) $f(x) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.75; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.704 and 12.447 C) Approximate local maximum at 1.735; approximate local minima at -6.701 and 12.447 D) Approximate local maximum at 1.736; approximate local minima at -6.701 and 12.447 Extremum Value 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) $\frac{Critical Pt. [derivative] Extremum [Value]}{x = 0}$ D) $\frac{Critical Pt. [derivative] Extremum [Value]}{x = 1}$ D) Critical Pt. [derivative] Extremum	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum D) Local maximum D are the Newton's method to estim the estimated solution. 164) $x^4 - 3 = 0$; $x_0 = 1$; Fir A) 1.29 165) $x^3 + 5x + 2 = 0$; $x_0 = -A - 0.38$ Sketch the graph and show all 166) $f(x) = 2x^3 - 15x^2 + 24$	ate the requested solution of B) 0.23 function and where they of $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0;	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0.33 (C) -0.39 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x ₂ a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. 154) Increasing $y = (x^2 - 9)^2$ A) $(-x, 0)$ B) $(-3, 0)$ C) $(-3, 3)$ D) $(3, \infty)$ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval 155) $f(s) = x^{1/3}$, $[-1,1]$ A) No B) Yes Find the most general antiderivative. 156) $\int (-7 \sec^2 x) dx$ A) $-7 \cot x + C$ B) $-7 \tan x + C$ C) $7 \cot x + C$ D) $\frac{\tan x}{7} + C$ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all 1 157) $f(s) = 0.1x^4 - x^3 - 15x^2 + 59x + 14$ A) Approximate local maximum at 1.831; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.447 C) Approximate local maximum at 1.735; approximate local minima at -6.643 and 0.069 Find the derivative at each critical point and determine the local extreme values. 158) $y = x^{2/3}(x^2 - 4); x \ge 0$ A) $\frac{Critical Pt}{\frac{x=0}{0}} \frac{1}{0} \frac{1}{\text{minimum}} \frac{1}{-3}$ C) $\frac{Critical Pt}{\frac{x=0}{x=1}} \frac{1}{0} \frac{1}{0} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} \frac{1}{1} \frac{1}$	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is Determine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum C) Local maximum D)	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is local extremum of the funct + 2 at -2; local minimum at -1 at 2; local minimum at -1 at 2; local minimum at 2 at the requested solution B) 1.31 -1; Find the one real solution B) -0.44 local extrema and inflection x	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0.33 (C) -0.39 (C) -0.	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. $ \begin{aligned} 151 & \operatorname{Increasing}_{Y} = (x^2 - 9)^2 \\ A)(-\infty, 0) & B)(-3, 0) & C)(-3, 3) & D)(3, \infty) \end{aligned} $ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval $ 155) & f(x) = x^{1/3}, & [-1,1] \\ A) No & B) Yes \end{aligned} $ Find the most general antiderivative. $ 156) & \int (-7 \sec^2 x) dx \\ A) -7 \cot x + C & B) -7 \tan x + C & C) 7 \cot x + C & D) \frac{\tan x}{7} + C \end{aligned} $ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I $ 157) & f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14 \\ A) Approximate local maximum at 1.73; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.616 B) Approximate local maximum at 1.735; approximate local minima at -6.613 and 0.069 Find the derivative at each critical point and determine the local cureme values. 158) y = x^{2/3}(x^2 - 4); x \ge 0 A) \frac{Critical Pt}{x = 1} \frac{derivative}{ Extremum Value}}{ maximum 0 } = \frac{B}{x = 1} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}}{ minimum -3} = \frac{B}{x = 1} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}}{ minimum -3} = \frac{B}{x = 1} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}}{ x = 0 } \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}}{ x = 1 } = \frac{B}{0} \frac{Critical Pt}{ erivative Extremum Value}} = \frac{C}{x = 0} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}} = \frac{C}{x = 0} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}} = \frac{B}{x = 1} \frac{Critical Pt}{0} \frac{derivative}{ Extremum Value}}{ x = 1 } \frac{Critical Pt}{0} \frac{Critical Pt}{ erivative Extremum Value}} = \frac{C}{x = 0} \frac{Critical Pt}{ erivative Extremum Value}} = \frac{C}{x = 0} \frac{Critical Pt}{ erivative Extremum Value}} = \frac{C}{x = 0} \frac{Critical Pt}{ erivative Extremum Value}} = \frac{C}{x = 0} Critical Pt$	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 1$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D the maximum b) Local maximum B) Local maximum B) Local maximum C) Local maximum D) Local maximum	ate the requested solution of B) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{2}$ local minimum at -1 at -2; local minimum at -1 at -1; local minimum at -2 at 1; local minimum at 2 at the requested solution B) 1.31 -1; Find the one real solution B) -0.44 local extrema and inflection x	of the equation. Start v (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.33 (C) -0.39 (C) -0.33 (C) -0.39 (C) -0	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) 163) 164) 165) 166)
Find the largest open interval where the function is changing as requested. $ \begin{aligned} 151 & 1ncreasing & y = (y^2 - 9)^2 \\ & A (-\infty, 0) & B (-3, 0) & C (-3, 3) & D (-3, \infty) \end{aligned} $ Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval (55) $f(x) = x^{1/3}$, $[-1,1]$ $A > No & B > Yes \end{aligned} $ Find the most general antiderivative. $ \begin{aligned} 1520 & \int (-7 \sec^2 x) dx \\ A - 7 \cot x + C & B - 7 \tan x + C & C - 7 \cot x + C & D - \frac{1}{7} + C \end{aligned} $ Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all I (57) $f(x) = 0.1x^4 - x^3 - 15x^2 + 59x + 14 \\ A > Approximate local maximum at 1.73; approximate local minima at -6.691 and 12.616 \\ B > Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.612 \\ B > Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.612 \\ B > Approximate local maximum at 1.735; approximate local minima at -6.691 and 12.612 \\ B > Approximate local maximum at 1.735; approximate local minima at -6.613 and 0.069 \\ Entities the derivative at each critical point and determine the local cureme values. 158 = y = x^{2/3}(x^2 - 4); x \ge 0 A) \frac{Critical Pt}{x = 0} \frac{derivative}{1} \frac{Extremum}{maximum} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{minimum} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{minimum} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{minimum} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{minimum} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{x = 1} \frac{Value}{0} \frac{Value}{x = 1} V$	154)	Use Newton's method to estim the estimated solution. 161) $-x^2 + 4x - 1 = 0$; $x_0 = 4$ A) 0.25 Find the extreme values of the 162) $y = \frac{x+1}{x^2 + 3x + 3}$ A) The maximum is B) None C) The maximum is D) The maximum is D) The maximum is D tetermine the location of each 163) $f(x) = -x^3 - 4.5x^2 - 6x$ A) Local maximum B) Local maximum D) Local maximum D) Local maximum D) Local maximum D) Local maximum D) Local maximum 164) $x^4 - 3 = 0$; $x_0 = 1$; Fir A) 1.29 165) $x^3 + 5x + 2 = 0$; $x_0 = -$ A) -0.38 Sketch the graph and show all 166) $f(x) = 2x^3 - 15x^2 + 24$	ate the requested solution of (1); Find the left-hand solution (2); Find the left-hand solution (3) 0.23 function and where they or $\frac{1}{3}$ at x = 0; the minimum is $\frac{1}{3}$ at x = 0; the minimum is (3) at x = 0; the minimum is (3) at x = 0; the minimum is (4) at x = 0; the minimum is (4) at x = 0; the minimum is (4) at x = 0; the minimum is (5) at x = 0; the minimum is (6) at x = 0; the minimum is (6) at x = 0; the minimum is (6) at x = 0; the minimum is (7) at	of the equation. Start v (C) -0.33 (Cur. -1 at x = -2. is 1 at x = -2. 1/3 at x = -2. (ction. (C) 1.33 (C) -0.39 n points.	vith given value of x ₀ and t D) 0.14 vith given value of x ₀ and t D) 1.32 D) -0.64	hen give x2 a 161) 162) 163) 163) 164) 165) 166)

Determine whether the funct	tion satisfies the hypotheses	s of the Mean Value Th	eorem for the given inter	val.	Find the function with the given	derivative whose graph p	asses through the point I	2	
$\int \frac{\cos \theta}{\theta}, -\pi =$	$\leq \theta < 0$			105)	192) $\mathbf{r}'(\theta) = 4 + \sec^2 \theta$, $\mathbf{P}(0, 0)$)	D) ((a) and (a)		192)
185) $f(\theta) = \begin{bmatrix} 0, \theta = \\ 0 \end{bmatrix}$	= 0	P) V		185)	A) $r(\theta) = 4\theta + \tan \theta$		B) $\mathbf{r}'(\theta) = 2\theta^2 + \tan\theta$		
Find a value of a so that f is c	ontinuous at c. or indicate t	his is impossible.			C) $r(\theta) = 2\theta^2 + \tan \theta$		D) $r(\theta) = 4\theta + \frac{1}{3} \sec^3 \theta$		
$\int \frac{-4}{x^2}, x < 0$				19()	Solve the problem. 193) You are driving along a	highway at a steady 71 ft/	sec when you see a deer	ahead and slam on the	193)
a, x = 0; c -4x, x > 0	= 0			186)	brakes. What constant of A) 16.80 ft/sec ²	deceleration is required to B) 0.12 ft/sec ²	stop your car in 300 ft? C) 8.40 ft/sec ²	D) 4.20 ft/sec ²	·
A) -4	B) Impossible	C) 16	D) 4		Solve the initial value problem.	2, 01210, 000	0,000 11,000	-,	
Use the maximum/minimum 187) $f(x) = x^5 - 15x^4 - 3x^5$	finder on a graphing calcul x^3 - $172x^2$ + $135x$ + 0.005	ator to determine the a	proximate location of al	l local extrema. 187)	194) $\frac{dr}{dt} = 9t + \sec^2 t$, $r(-\pi) =$	-5			194)
A) Approximate l	ocal maximum at 0.432; app	roximate local minimum	at -12.549	·	A) r = 9 + tan t - 14		B) $r = 9t^2 + tan t - 5 - 6t^2$	9π2	
C) Approximate l	ocal maximum at 0.373, app	roximate local minima a	t -0.409 and -12.576		C) $r = \frac{9}{2}t^2 + \tan t - 5 -$	$\frac{9}{2}\pi^2$	D) $r = \frac{9}{2}t^2 + \cot t - 5 -$	$\frac{9}{2}\pi^2$	
D) Approximate (ocal maximum at 0.379; app	roximate local minimun	at 12.565		Solve the problem.				
188) $\frac{dy}{dx} = \frac{1}{x^3} + x, \ x > 0;$; y(2) = 1			188)	195) A rocket lifts off the sur rocket be going 2.5 min	rface of Earth with a consta utes later?	ant acceleration of 30 m/s	ec ² . How fast will the	195)
A) $y = -\frac{1}{2} + \frac{9}{8}$		B) $y = -\frac{1}{2} + \frac{x^2}{2}$	$-\frac{7}{8}$		A) 187.5 m/sec	B) 75 m/sec	C) -75 m/sec	D) 37.5 m/sec	
C) $v = \frac{4}{x^2} + \frac{x^2}{x^2} - \frac{x^2}{x^2}$	5	D) $v = \frac{-1}{-1} + \frac{x^2}{-1}$	0		196) Decreasing $f(x) = \sqrt{4}$	ere the function is change	ng as requested.		196)
x4 2	4	2x ² 2			A) (4, ∞)	B) (-4, ∞)	C) (-∞, 4)	D) (-∞, -4)	
Use l'Hôpital's rule to find th	ne limit.			189)	197) $y' = 7x^2 - 5x$	ne given derivative.	7 5		197)
x→∞ x	D) 1	C) 10	D) 1		A) $\frac{7}{3}x^2 + \frac{5}{2}x + C$		B) $-\frac{7}{3}x^3 - \frac{5}{2}x^2 + C$		
A) U	D/ 1	C) 10	10) 10		C) $\frac{7}{3}x^3 - \frac{5}{2}x^2 + C$		D) $\frac{7}{3}x^3 + C$		
190) $\lim_{X \to \infty} \left(\sqrt{x^2 + 5x} - x \right)$	s)			190)	Use the maximum/minimum find 100 $f(x) = x^4$ 4.3 52 2 c	ler on a graphing calculate	or to determine the appro	oximate location of all lo	ocal extrema.
A) 5	B) $-\frac{5}{2}$	C) 0	D) $\frac{5}{2}$		(x) = $x^4 - 4x^3 - 53x^2 - 8$ A) Approximate local	maximum at 0.895; approv	cimate local minima at -3.	256 and 7.152	190)
Find all possible functions w	rith the given derivative.				B) Approximate local C) Approximate local	maximum at 0.926; approx maximum at 0.97; approxi	kimate local minima at −3. mate local minima at −3.1	275 and 7.16 .94 and -0.087	
191) $y' = 5x^7$	B) $\frac{7}{2}$ x8 + C	$(1)\frac{5}{2}x^{8}+C$	$D)\frac{5}{5}x8+C$	191)	D) Approximate local	maximum at =0.944; appro	oximate local minima at -	3.192 and 7.136	
4 4 4	5 5 1 1 2	e, 8 x + e	<i>D</i>) 7 x + C		Solve the problem. 199) On our moon, the accele	eration of gravity is 1.6 m/	sec ² . If a rock is dropped	into a crevasse, how	199)
					fast will it be going just A) 72 m/sec	before it hits bottom 45 see B) -36 m/sec	conds later? C) -72 m/sec	D) 3240 m/sec	
		57					58		
Cleated the graph and chow a	Il local avtrama and inflacti	on noints			(-	(2-)		
200) $f(x) = x + \cos 2x, 0 \le 1$	$x \le \pi$	on points.		200)	C) Local minimum: $\frac{\pi}{4}$	$\left[\frac{3\pi}{4}, -1\right]$; local maximum: $\left[\frac{3\pi}{4}\right]$, 3		
					Inflection point: $\left[\frac{\pi}{2}\right]$,1			
2					3				
¢ + + + +									
A) Local minimur Inflection poin	m: (1.444, -0.246); local maximuts: (0.785, 0.393) and (2.356, 1	mum: (0.126, 1.031) 1.178)							
Ţ,	· · · · · · · · ·				D) Local minimum: $\left(\frac{5}{1}\right)$	$\left(\frac{5\pi - 6\sqrt{3}}{2}\right)$; local maxim	tum: $\left(\frac{\pi}{12}, \frac{\pi + 6\sqrt{3}}{12}\right)$		
					Inflection points: $\left\{\frac{\pi}{4}\right\}$	$\left[\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\left[\frac{3\pi}{4}, \frac{3\pi}{4}\right]$,		
					1 <u>1</u>				
B) No local extrem	na.								
Inflection poin	$t:\left[\frac{\pi}{2},\frac{\pi}{2}\right]$								
	┿╪╪┽┨								
	1 1 1 ×								
*									
		59					60		

Solve the problem. 237) Given the acceleration, initial velocity, and initial	position of a body moving along a coordinate line	237)	Find the extreme values of the function and where 244) $y = x^2 + 2x - 3$	e they occur.	244)
at time t, find the body's position at time t.	position of a body moving along a coordinate mile		A) The minimum is 1 at $x = 4$.	B) The minimum is 1 at $x = -4$.	
a = 9.6, v(0) = -9, s(0) = 6 A) $s = 4.9t^2 - 9t + 6$	B) $s = -4.9t^2 + 9t + 6$		C) The minimum is -1 at $x = 4$.	D) The minimum is -4 at $x = -1$.	
C) $s = 4.9t^2 - 9t$	D) $s = 9.8t^2 - 9t + 6$		Use the graph of the function f(x) to locate the locate and concave down.	al extrema and identify the intervals where the function i	is concave up
Find the extreme values of the function and where they or 10	ccur.		245)		245)
238) $y = \frac{10}{\sqrt{1 - 3x^2}}$		238)	10 y		
A) The maximum is 10 at $x = -2$.	B) The minimum is 0 at $x = 1$.				
C) The maximum is 10 at $x = 2$.	D) The minimum is 10 at $x = 0$.				
Solve the problem. 239) At noon, ship A was 15 nautical miles due north of	of ship B. Ship A was sailing south at 15 knots	239)	-10 5 10 ×		
(nautical miles per hour; a nautical mile is 2000 ya sailing east at 6 knots and continued to do so all c	ards) and continued to do so all day. Ship B was day. The visibility was 5 nautical miles. Did the		-5		
ships ever sight each other?	1 d		-10		
B) No. The closest they ever got to each other w	vas 6.6 nautical miles.		A) Local maximum at $x = 3$; local minin	mum at $x = -3$; concave up on (0, -3) and (3, ∞); concave	
C) Yes. They were within 4 nautical miles of eac	ch other.		down on $(-3, 3)$ B) Local minimum at $x = 3$: local maxim	mum at $x = -3$: concave down on $(0, \infty)$; concave up on $(-\infty)$	
D) No. The closest they ever got to each other w	as 5.0 nautical filles.		,0)		
$240) \int 36(9x+3)^3 dx = (9x+3)^4 + C$	nula is correct.	240)	C) Local minimum at x = 3; local maxin down on (-3, 3)	mum at $x = -3$; concave up on (0, -3) and (3, ∞); concave	
A) Yes	B) No		D) Local minimum at $x = 3$; local maximum 0	mum at x = -3 ; concave up on (0, ∞); concave down on ($-\infty$	
Find the absolute extreme values of each function on the i	nterval.		L'Hopital's rule does not help with the given limit	t. Find the limit some other way.	
241) $y = 6 - 5x^2$ on [-3, 4]		241)	246) $\lim_{x \to \infty} \frac{\sec x}{\sec x}$		246)
A) Maximum = $(0, 5)$; minimum = $(4, -86)$ C) Maximum = $(0, 6)$; minimum = $(4, -74)$	 B) Maximum = (0, 12); minimum = (4, -39) D) Maximum = (0, 30); minimum = (-3, -39) 		$X \rightarrow 0$ (SC X A) 1 B) 0	C) m D) -1	
Solve the problem.				-,	
242) Find the optimum number of batches (to the near	est whole number) of an item that should be	242)			
unit for one year, and it costs \$360 to set up the fa	actory to produce each batch.				
A) 36 batches B) 26 batches	C) 24 batches D) 34 batches				
Solve the initial value problem. $242) \frac{dy}{dy} = 4x - 3/4 y(1) = 5$		242)			
$\frac{243}{dx} = 4x^{-3/2}, y(1) = 5$		243)			
A) $y = 4x^{1/4} + 1$	B) $y = 16x^{1/4} + 80$				
C) $y = 16x^{1/4} - 11$	D) $y = -\frac{3}{4}x^{-7/4} - \frac{11}{4}$				
	69			70	
Find the derivative at each critical point and determine the	e local extreme values.	2470	Find the derivative at each critical point and deter 251) $v = x(1 - x^2)$	mine the local extreme values.	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$	e local extreme values.	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Philderication [Foregoine]	mine the local extreme values. B)	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A)	e local extreme values. B)	247)	Find the derivative at each critical point and deter 251) y = x(1 - x ²) A) <u>Critical Pt. derivative [Extremum]V</u> x = -0.58 0 local max -0	mine the local extreme values. B) <u>Critical Pt. (derivative [Extremum] Value</u> <u>3.77</u> <u>0</u> local max -0.77	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative [Extremum Value] $x - \frac{3}{2}$	B) Critical Pt. derivative Extremum Value	247)	Find the derivative at each critical point and deter 251) y = x(1 - x ²) A) <u>Critical Pt. derivative [Extremum]V</u> x = -0.58 0 local max -0 x = 0.58 0 local min 0	mine the local extreme values. B) Alue $\frac{Critical Pt. derivative Extremum Value }{x = 0.58} 0 ocal max -0.77 $ 0.38 x = -0.58 0 ocal min 0.38	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = 0.58 0 local max - C x = 0.58 0 local min (C) Critical Pt. derivative [Extremum]V	mine the local extreme values. $ \begin{array}{c} B)\\ \underline{Critical Pt. derivative Extremum Value} \\ X = 0.58 0 local max 0.77 0.28 0 local min 0.38 0.28 0 local min 0.38 0 0 0 0 0 0 0 0 0 $	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $\overline{x = \frac{3}{2}}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 x = 0.58 0 local min -6 C) Critical Pt. derivative [Extremum]V x = -0.58 0 local min -6 x = 0.58 0 local min -6	mine the local extreme values. B) Critical Pt. derivative Extremum Value $x = 0.58$ D Critical Pt. derivative Extremum Value 0.38 D Critical Pt. derivative Extremum Value $x = 0.58$ D Critical Pt. derivative Extremum Value $x = 0.58$ D Critical Pt. derivative Intervalue 0.38 D Critical Pt. derivative 0.38 D Critical Pt.	251)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 0	b) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 local max - 4 x = 0.58 local min 0 C) Critical Pt. derivative [Extremum]V x = -0.58 local max 4 x = 0.58 local max 4 x = 0.58 local min -6	mine the local extreme values. $\begin{array}{c} alue\\ 0.77\\ 3.28 \end{array} \xrightarrow{\begin{tabular}{l} \begin{tabular}{ll} & & & & \\ \hline x = 0.58 \\ 0 & & & & \\ \hline x = -0.58 \\ 0 & & & & \\ \hline \end{array} \end{array} \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \end{array} \end{array} $	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$	e local extreme values. B) Critical Pt. derivative Extremum Value. $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max - C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max - x = -0.58 0 local max - x = -0.58 0 local max - x = -0.58 0 local max - C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max - (1) C) C) C) C) C) C) C) C) C) C	mine the local extreme values. $\begin{array}{c} alue\\ \hline 0.77\\ x=0.58 \end{array} \qquad \begin{array}{c} Critical \ Pt. \ derivative \ Extremum Value\\ \hline x=0.58 \ 0 \ ocal \ max \ -0.77\\ x=0.58 \ 0 \ ocal \ min \ 0.38 \end{array}$ $\begin{array}{c} D\\ \hline Critical \ Pt. \ derivative \ Extremum Value\\ \hline x=0.58 \ 0 \ ocal \ max \ 0.38\\ x=-0.58 \ 0 \ ocal \ max \ 0.38 \end{array}$	251)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{57}{4}$ C) Critical Pt derivative Extremum Value	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt. derivative Extremum Value	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max - (C) Critical Pt. derivative Extremum [V x = -0.58 0 local min (C) Critical Pt. derivative Extremum [V] x = -0.58 0 local min - (C) Give an appropriate answer. 252) Find the value or values of c that satisfy	mine the local extreme values. $\begin{array}{c} alue\\ \hline 0.77\\ 0.38 \end{array} \qquad \begin{array}{c} B)\\ \hline Critical Pt. derivative Extremum Value\\ \hline x = 0.58 & 0 & local max & -0.77\\ \hline x = -0.58 & 0 & local min & 0.38\\ \hline 0.38 \\ \hline x = -0.58 & 0 & local max & 0.38\\ \hline x = -0.58 & 0 & local max & 0.38\\ \hline 0 & local min & -0.38\\ \hline 1 & local min & -0.38\\ \hline 0 & local min & -0.38\\ \hline \end{array}$	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}}$ 0 local max $\frac{57}{4}$	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max -2 x = 0.58 0 local min -0 Critical Pt. derivative Extremum [V x = -0.58 0 local min -0 Critical Pt. derivative Extremum [V x = -0.58 0 local min -0 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}$ 5	mine the local extreme values. $\begin{array}{c} \text{B)} \\ \underline{\text{Critical Pt. derivative Extremum Value}} \\ \underline{\text{N} = 0.58} & 0 & \text{local max } -0.77 \\ x = -0.58 & 0 & \text{local max } -0.77 \\ x = -0.58 & 0 & \text{local min } -0.38 \\ \end{array}$ $\begin{array}{c} \text{D)} \\ \underline{\text{Critical Pt. derivative Extremum Value}} \\ \underline{\text{N} = 0.58} & 0 & \text{local min } -0.38 \\ \hline \text{N} = -0.58 & 0 & \text{local min } -0.38 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 & \text{H} = -0.58 \\ \hline \text{H} = -0.58 \\$	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}}$ 0 local min $\frac{33}{4}$	e local extreme values. B) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max -4 x = 0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 x = -0.58 0 local max -6 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$	mine the local extreme values. $\begin{array}{c} B) \\ \hline Critical Pt. derivative Extremum Value \\ \hline x = 0.58 0 local max 0.77 \\ \hline x = -0.58 0 local min 0.38 \\ \hline \\ D) \\ \hline Critical Pt. derivative Extremum Value \\ \hline x = 0.58 0 local max 0.38 \\ \hline \\ x = -0.58 0 local max 0.38 \\ \hline \\ x = -0.58 0 local max 0.38 \\ \hline \\ B \\ \hline \\ D \\ D \\ \hline \\ C \\ D \\ D \\ D \\ C \\ D \\ D \\ C \\ D \\ D$	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ x = 1 undefined local max 2	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 2	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max -4 x = 0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 x = -0.58 0 local max -6 Comparison of the second	mine the local extreme values. $\begin{array}{c} alue\\ 1.77\\ 3.38 \end{array} \qquad \begin{array}{c} B)\\ \hline Critical Pt. \left derivative \ Extremum \ Value\\ 10cal max \ 0.77\\ x = -0.58 \ 0 \ ocal min \ 0.38 \end{array} \\ \hline D \\ \hline Critical Pt. \left derivative \ Extremum \ Value\\ 10cal max \ 0.38 \ 0 \ ocal max \ 0.38 \end{array} \\ \hline D \\ \hline Critical Pt. \left derivative \ Extremum \ Value\\ x = 0.58 \ 0 \ ocal max \ 0.38 \ 0.38 \end{array} \\ \hline D \\ \hline D \\ \hline Critical Pt. \left derivative \ Extremum \ Value\\ x = -0.58 \ 0 \ ocal max \ 0.38 $	251)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 ocal max $\frac{33}{4}$ $x = 1$ undefined ocal max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 ocal min $\frac{33}{4}$ $x = 1$ undefined ocal max $\frac{2}{4}$	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min $4x = -\frac{9}{2} 0 local max \frac{57}{4}D)Critical Pt. derivative Extremum Valuex = -\frac{3}{2} 0 local max \frac{33}{4}x = 1$ undefined local min $2x = -\frac{9}{2} 0 local max \frac{57}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt-derivative [Extremum]V x = -0.58 0 local max -4 x = 0.58 0 local min 0 C) Critical Pt-derivative [Extremum]V x = -0.58 0 local min 0 Cirtical Pt-derivative [Extremum]V x = -0.58 0 local min -6 Give an appropriate answer. 252) Find the value or values of c that satisfy interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x + 1}}{\sqrt{x + 9}}$	mine the local extreme values. $\begin{array}{c} B) \\ \hline Critical Pt. derivative Extremum Value \\ \hline x = 0.58 0 local max 0.77 \\ \hline x = -0.58 0 local min 0.38 \\ \hline D) \\ \hline Critical Pt. derivative Extremum Value \\ \hline x = 0.58 0 local max 0.38 \\ \hline x = -0.58 0 local max 0.38 \\ \hline x = -0.58 0 local min -0.38 \\ \hline D) \\ \hline Critical Pt. derivative Extremum Value \\ \hline x = 0.58 0 local max 0.38 \\ \hline D) \\ \hline Critical Pt. derivative \\ \hline x = -0.58 0 local max 0.38 \\ \hline D) \\ \hline D \\ D \\$	251) 252) 253)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{2}{34}$ $x = 1$ undefined local max $\frac{2}{34}$	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local min $\frac{2}{4}$ $x = 1$ undefined local min $\frac{2}{4}$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 x = 0.58 0 local max -4 C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 x = -0.58 0 local max -4 x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 (C) Critical Pt. derivative [Extremum]V x = -0.58 0 local m	mine the local extreme values. $\begin{array}{c} alue \\ \frac{127}{3.38} & D \\ \frac{Critical Pt. derivative Extremum Value 0.27}{x = -0.58} \\ \frac{100}{0} \\ \frac{100}{0 \operatorname{cal} \min 0.38} \\ \frac{D}{x = -0.58} \\ \frac{D}{0} \\ \frac{Critical Pt. derivative Extremum Value 0.38}{0} \\ \frac{100 - 100 \operatorname{cal} \max 0.38}{0} \\ \frac$	251) 252) 253)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $x = \frac{3}{2} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{33}{4}$ C) Critical Pt. derivative Extremum Value $x = \frac{9}{2} \text{undefined local max} \frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = -\frac{3}{2} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in $248 y^2 = 10x^2 \text{ cive } y(0) = 1$	e local extreme values. B) $\frac{\text{Critical Pt. derivative Extremum Value.}}{x = -\frac{3}{2}} 0 \qquad \text{local max } \frac{33}{4}$ $x = 1 \qquad \text{undefined local min } 4$ $x = -\frac{9}{2} 0 \qquad \text{local max } \frac{57}{4}$ D) $\frac{\text{Critical Pt. derivative Extremum Value.}}{x = -\frac{3}{2}} 0 \qquad \text{local max } \frac{33}{4}$ $x = 1 \qquad \text{undefined local min } 2$ $x = \frac{9}{2} 0 \qquad \text{local max } \frac{57}{4}$ whitial value problem.	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -6 x = 0.58 0 local min 0 C) Critical Pt. derivative [Extremum]V x = 0.58 0 local max -1 x = 0.58 0 local max -1 x = 0.58 0 local max -1 x = 0.58 0 local max -1 (1) Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x+1}}{\sqrt{x+9}}$ A) 0 B) 4 Plot the zero for begiven polymonial on the num 254) $y = (x = 50x + 40^2)$	mine the local extreme values. $\begin{array}{c} alue\\ 3.77\\ 3.38 \end{array} \qquad \begin{array}{c} B)\\ \hline \frac{Critical Pt}{x=0.58} & 0\\ \hline local max & -0.77\\ x=-0.58 & 0\\ \hline local min & 0.38\\ \hline 0\\ 3.88\\ \hline 0\\ 3.87\\ \hline 0\\ \hline $	251) 252) 253)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $x = \frac{3}{2} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = \frac{9}{2} \text{undefined local max} \frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = -\frac{3}{2} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in 248) y' = 10x^2 \sin x, y(0) = 1 A) y = -10(x^2 - 2) \cos x + 20x \sin x - 19	e local extreme values. B) $\frac{Critical Pt. derivative [Extremum] Value}{x = -\frac{3}{2}} 0 local max \frac{33}{4}$ $x = 1 undefined local min 4$ $x = -\frac{9}{2} 0 local max \frac{57}{4}$ D) $\frac{Critical Pt. derivative [Extremum] Value}{x = -\frac{3}{2}} 0 local max \frac{33}{4}$ $x = 1 undefined local min 2$ $x = \frac{9}{2} 0 local max \frac{57}{4}$ stillat value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$	247)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative Extremum V x = -0.58 0 local max -6 x = 0.58 0 local min 0 C) Critical Pt. derivative Extremum V x = -0.58 0 local max -6 x = 0.58 0 local max -6 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x+1}}{\sqrt{x+9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^{2}$	mine the local extreme values. $\begin{array}{c} alue\\ 0.77\\ 3.38 \end{array} \qquad \begin{array}{c} Critical Pt. derivative Extremum Value\\ x = 0.58 & 0 & ocal min & 0.77\\ x = -0.58 & 0 & ocal min & 0.38\\ \hline \\ 0.38\\ 0.77 \end{array} \qquad \begin{array}{c} D)\\ Critical Pt. derivative Extremum Value\\ \hline x = 0.58 & 0 & ocal max & 0.38\\ x = -0.58 & 0 & ocal min & -0.38\\ \hline \\ b - a \end{array} = f'(c) for the function f(x) = x^2 + 3x + 3 on the\\ C) -3, -2 & D) 0, -\frac{5}{2}\\ \hline \\ t. Find the limit some other way.\\ \hline \\ C) \approx & D) 2\\ \hline \end{array}$	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = \frac{9}{2}$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ x = 1 undefined local max $2x = -\frac{3}{2} 0 local min \frac{33}{4}x = 1$ undefined local max $2x = \frac{9}{2} 0 local min \frac{57}{4}Use a computer algebra system (CAS) to solve the given in248) y^4 = 10x^2 \sin x, y(0) = 1A) y = -10(x^2 - 2) \cos x + 20x \sin x - 19C) y = -10x \cos x + 10 \sin x + 1$	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 2 $x = -\frac{3}{2}$ 0 local max $\frac{57}{4}$ stillal value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$	247)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max - C) Critical Pt. derivative [Extremum]V x = -0.58 0 local min - C) Critical Pt. derivative [Extremum]V x = -0.58 0 local min - Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{X \to \infty} \frac{\sqrt{4X+1}}{\sqrt{X+9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^2$	mine the local extreme values. $\begin{array}{c} alue \\ 0.77 \\ 3.8 \end{array} \qquad \begin{array}{c} B \\ \hline x = 0.58 \\ 0 \\ x = -0.58 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}}$ 0 local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}}$ 0 local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}}$ 0 local min $\frac{33}{4}$ x = 1 undefined local max 2 $x = \frac{9}{2}$ 0 local min $\frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in 248) $y' = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if a_{x} , are absolute.	e local extreme values. B) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 2 $x = \frac{9}{2}$ 0 local max $\frac{57}{4}$ mitial value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$ n, and say where they are assumed. Tell which of	247) 248) the extreme	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 x = 0.58 0 local max -1/2 Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 x = -0.58 0 local max -1/2 x = -0.58 0 local max -1/2 x = -0.58 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V $\overline{x = -0.58}$ 0 local max -1/2 (c) Critical Pt. [derivative [Extremum] V Critical Pt.	mine the local extreme values. $\frac{alue}{1277} \qquad $	251) 252) 253) 254)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}} 0 \qquad \text{local max} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \frac{37}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \qquad \text{local max} \frac{37}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \qquad \text{local max} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \frac{37}{4}$ Use a computer algebra system (CAS) to solve the given in $248) y' = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if any, are absolute. $249) f(x) = x^2 - 6x - x < x \le 6$	e local extreme values. B) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = -\frac{9}{2}$ 0 local max $\frac{57}{4}$ D) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 2 $x = \frac{9}{2}$ 0 local max $\frac{57}{4}$ white the set of the se	247) 248) the extreme 249)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max -4 x = 0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 x = -0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 C) Critical Pt. derivative Extremum [V x = -0.58 0 local max -6 C) Cive an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ U'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x + 1}}{\sqrt{x + 9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^{2}$ $-\frac{1}{4-12-10-8-6-4-2}$ 0 2 4 6 8 10 A) $-\frac{1}{4-12-10-8-6-4-2}$ 0 2 4 6 8 10 A)	mine the local extreme values. $\begin{array}{c} alue \\ \frac{127}{3.38} \\ \hline \\ x = -0.58 \\ 0 \\ \hline \\ x = -0.58 \\ 0 \\ \hline \\ 0 \\ coal max \\ 0.77 \\ coal \\ 0 \\ coal max \\ 0.77 \\ \hline \\ x = -0.58 \\ 0 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ coal max \\ 0.38 \\ \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline 0 $	251) 252) 253) 254)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}} 0 \qquad \text{local max} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \frac{37}{4}$ C) Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \qquad \text{local max} \frac{37}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2} 0 \qquad \text{local max} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \frac{37}{4}$ Use a computer algebra system (CAS) to solve the given in $248) y' = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if any, are absolute. $249) f(x) = x^2 - 6x, -x < x \le 6$ A) local and absolute minimum: (3, -9); local and absolute	e local extreme values. B) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min $4x = -\frac{9}{2} 0 local max \frac{57}{4}D)Critical Pt. derivative Extremum Valuex = -\frac{3}{2} 0 local max \frac{33}{4}x = 1 undefined local min x = \frac{9}{2} 0 local max \frac{33}{4}x = \frac{9}{2} 0 local max \frac{57}{4}still value problem.B) y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1D) y = -10 \cos x^2 + 11n, and say where they are assumed. Tell which ofand absolute maximum: (6, 0)$	247) 248) the extreme 249)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt-derivative Extremum [V x = -0.58 0 local max -4 x = 0.58 0 local max -6 C Critical Pt-derivative Extremum [V x = -0.58 0 local max -6 Critical Pt-d	mine the local extreme values. $\begin{array}{c} alue\\ \frac{127}{2}\\ 3.8 \end{array} \qquad \begin{array}{c} B)\\ \frac{Critical Pt. derivative}{ber derivative } \frac{Extremum Value }{ local max } \frac{0.77}{0.38}\\ \hline \\ 0 \\ \hline \\ 0 \\ 3.8 \\ \hline \\ 0 \\ \hline 0 \\ 0 \\$	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local min $\frac{4}{4}$ $x = \frac{9}{2}$ undefined local max $\frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{2}{57}$ $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ x = 1 undefined local max $2x = \frac{9}{2} 0 local min \frac{57}{4}Use a computer algebra system (CAS) to solve the given in248) y' = 10x^2 \sin x, y(0) = 1A) y = -10(x^2 - 2) \cos x + 20x \sin x - 19C) y = -10x \cos x + 10 \sin x + 1Identify the function's extreme values in the given domainvalues, if any, are absolute.249) f(x) = x^2 - 6x, -x < x \le 6A) Local and absolute minimum: (3, -9); Local and absolute minimum: (3, -9); Local and absolute minimum: (6, 0); Local and absolute minimum: (6, 0); Local and absolute minimum: (6, 0); Local and absolute minimum: (7, 7); Local and absolute minimume: (7, 7);$	e local extreme values. B) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local min}}{x = -\frac{9}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{57}{4}$ D) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local min}}{x = \frac{9}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local max}} \frac{37}{4}$ while value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$ n, and say where they are assumed. Tell which of and absolute maximum: (6, 0) aximum: (3, -9)	247) 248) the extreme 249)	Find the derivative at each critical point and deter 251) $y = x(1 - x^2)$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -1 x = 0.58 0 local max -1 0 local max -1 x = 0.58 0 local m	mine the local extreme values. $\begin{array}{c} alue \\ \frac{1277}{2} \\ x = -0.58 \\ 0 \\ 10cal max \\ 0.77 \\ x = -0.58 \\ 0 \\ 10cal min \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ 10cal max \\ 0.38 \\ \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline 0 \\ 0 \\$	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = \frac{9}{2}$ undefined local max $\frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = \frac{9}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{2}{57}$ $x = \frac{9}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{2}{57}$ Use a computer algebra system (CAS) to solve the given in 248) $y^2 = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if any, are absolute. 249) f(x) = x^2 - 6x, $-x < x \le 6$ A) Local and absolute minimum: (3, -9); Local and absolute m D) Local and absolute minimum: (3, -9); Local and absolute m	e local extreme values. B) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local min}}{x = -\frac{9}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{57}{4}$ D) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{1}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local min}}{x = \frac{9}{2}} \frac{1}{0} \frac{10 \text{ cal max}}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined local min}}{x = \frac{9}{2}} \frac{2}{0} \frac{10 \text{ cal max}}{10 \text{ cal max}} \frac{33}{4}$ while value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$ n, and say where they are assumed. Tell which of and absolute maximum: (6, 0) aximum: (3, -9) maximum: (6, 0)	247) 248) the extreme 249)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative Extremum [V x = -0.58 0 local max -4 x = 0.58 0 local max -4 C C C C C C C C C C C C C	mine the local extreme values. $\begin{array}{c} alue \\ \frac{127}{238} \\ \hline x = 0.58 \\ \hline 0 \\ 10cal max \\ 0.77 \\ \hline x = -0.58 \\ \hline 0 \\ \hline 0 \\ 10cal max \\ 0.38 \\ \hline 0 \\ \hline \end{array}$	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ $x = 1$ undefined local min $\frac{4}{4}$ $x = \frac{9}{2}$ undefined local max $\frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ $x = \frac{9}{2}$ 0 local min $\frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in 248) $y^2 = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20 \sin x - 19$ C) $y = -10 \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if any, are absolute. 249) f(x) = x^2 - 6x - \pi < x \le 6 A) Local and absolute minimum: (3, -9); Local in B) Local minimum: (3, -9); Local and absolute minimum: (3, -9); Local in C) Local and absolut	e local extreme values. B) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{1}{0} \frac{local max}{local max} \frac{33}{4} $	247) 248) the extreme 249)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative [Extremum]V $x = -0.58$ 0 local max $\frac{1}{4}$ $x = 0.58$ 0 local max $\frac{1}{4}$ Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x + 1}}{\sqrt{x + 9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^{2}$ (-14 - 12 - 10 - 3 - 6 - 4 - 2 - 0 - 2 - 4 - 6 - 8 - 10) A) C) C) C) C) Cloce the initial value problem. 253) $\frac{d^{2}r}{dt^{2}} = \frac{4}{47}; \frac{d^{2}}{dt} \Big _{t=1}^{t} = 4, r(1) = 5$	mine the local extreme values. $\begin{array}{c} alue \\ \frac{177}{2} \\ x = 0.58 \\ 0 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	251) 252) 253) 254)
Find the derivative at each critical point and determine the 247) $y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt. derivative Extremum Value $x = \frac{3}{2}$ 0 local max $\frac{33}{4}$ x = 1 undefined local min 4 $x = \frac{9}{2}$ undefined local max $\frac{57}{4}$ C) Critical Pt. derivative Extremum Value $x = -\frac{3}{2}$ 0 local min $\frac{33}{4}$ $x = 1$ undefined local max $\frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in 248) $y' = 10x^2 \sin x, y(0) = 1$ A) $y = -10(x^2 - 2) \cos x + 20 \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain values, if any, are absolute. 249) $f(x) = x^2 - 6x, -x < x \le 6$ A) Local and absolute minimum: $(3, -9)$; Local in B) Local minimum: $(3, -9)$; Local and absolute minimum: $(3, -9)$; Local in D) Local and absolute minimum: $(3, -9)$; Local in D) Local and absolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in a dasolute minimum: $(3, -9)$; Local in D) Local in (5x) i mini f(x) i m	e local extreme values. B) $\frac{Critical Pt. derivative Extremum Value}{x = -\frac{3}{2}} 0 local max \frac{33}{4}$ $x = 1 undefined local min 4$ $x = -\frac{9}{2} 0 local max \frac{57}{4}$ D) $\frac{Critical Pt. derivative Extremum Value}{x = -\frac{3}{2}} 0 local max \frac{33}{4}$ $x = 1 undefined local min 2$ $x = -\frac{9}{2} 0 local max \frac{33}{4}$ $x = 1 undefined local min 2$ $x = -\frac{9}{2} 0 local max \frac{57}{4}$ withal value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$ n, and say where they are assumed. Tell which of and absolute maximum: (6, 0) aximum: (3, -9) maximum: (6, 0)	247) 248) the extreme 249) 250)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. Iderivative [Extremum]V x = -0.58 0 local max -1/4 x = 0.58 0 local max -1/4 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval (-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x + 1}}{\sqrt{x + 9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^{2}$ $\frac{1}{-14 - 12 - 10 - 8 - 6 - 4 - 2 - 0 - 2 - 4 - 6 - 8 - 10}$ A) C) C) C) C1 C1 C1 C1 C2 C3 Solve the initial value problem. 253) $\frac{d^{2}r}{dt^{2}} = \frac{4}{4}; \frac{dr}{dt} \Big _{t=1} = 4, r(1) = 5$ A) $r = 2 + 6t + 13$	mine the local extreme values. alue $\frac{177}{3.38} = \frac{1}{2} \frac{\frac{Critical Pt}{x = 0.58} \frac{1}{0}}{\frac{0}{10 \text{ cal max}} \frac{10.77}{10 \text{ cal min}}}{\frac{10.77}{0.38}}$ $\frac{100}{2} \frac{\frac{Critical Pt}{x = 0.58} \frac{1}{0}}{\frac{10 \text{ cal max}}{10 \text{ cal min}} \frac{10.38}{0.38}}{\frac{10.38}{0}}$ $\frac{100}{10 \text{ cal max}} \frac{10.38}{0.38}$ $\frac{100}{10 \text{ cal max}} \frac{10.38}{0.38}$ $\frac{1(b) - f(a)}{b - a} = f'(c) \text{ for the function } f(x) = x^2 + 3x + 3 \text{ on the}}{(c) - 3, -2} \qquad D) 0, -\frac{5}{2}$ The find the limit some other way. C) = D 2 $C = D 2$ $C = D = 0$ $C = 0$	251) 252) 253) 254)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $x = \frac{3}{2} \qquad 0 \qquad \text{local max} \qquad \frac{33}{4}$ $x = 1 \qquad \text{undefined local min} \qquad 4$ $x = \frac{9}{2} \qquad \text{undefined local max} \qquad \frac{57}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2} \qquad 0 \qquad \text{local max} \qquad \frac{37}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2} \qquad 0 \qquad \text{local max} \qquad \frac{37}{4}$ C) Critical Pt derivative Extremum Value $x = -\frac{3}{2} \qquad 0 \qquad \text{local min} \qquad \frac{33}{4}$ $x = 1 \qquad \text{undefined local max} \qquad 2$ $x = -\frac{9}{2} \qquad 0 \qquad \text{local min} \qquad \frac{57}{4}$ Use a computer algebra system (CAS) to solve the given in $248) y' = 10x^2 \sin x, y(0) = 1$ A) $y = -10x^2 - 2 \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Identify the function's extreme values in the given domain subsciection of the solute minimum: (3, -9); Local at B) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in D) Local minimum: (3, -9); Local at absolute minimum: (3, -9); Local in C = C = C = C = C = C = C = C = C = C =	e local extreme values. B) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = 1$ $undefined \frac{1}{10 \text{ cal max}} \frac{33}{4}$ $x = 1$ $undefined \frac{1}{10 \text{ cal max}} \frac{37}{4}$ D) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{0}{0} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{33}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} \frac{3}{4} \frac{3}{4}}{x = 1}$ $x = -\frac{3}{2} \frac{1}{10 \text{ cal max}} $	247) 248) the extreme 249) 250)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -6 x = 0.58 0 local max -6 x = 0.58 0 local max -6 x = 0.58 0 local max -6 C) Critical Pt. derivative [Extremum]V x = 0.58 0 local max -6 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval (-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ L'Hopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x+1}}{\sqrt{x+9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x - 5)(x + 4)^{2}$ $\frac{-14 - 12 - 10 - 5 - 6 - 4 - 2 - 0 - 2 - 4 - 6 - 8 - 10}{-14 - 12 - 10 - 5 - 6 - 4 - 2 - 0 - 2 - 4 - 6 - 8 - 10}$ C) C) C) C) C) C) C) C) C) C)	mine the local extreme values. $\frac{alue}{1.77}$ $\frac{B}{x = 0.58} \frac{Critical Pt. derivative Extremum Value}{ local max -0.77}$ $x = -0.58 \frac{0}{0} \frac{ local max -0.78}{ local min 0.38}$ $\frac{B}{x = -0.58} \frac{D}{0} \frac{ local max 0.38}{ local min -0.38}$ $\frac{f(b) - f(a)}{b - a} = f'(c) \text{ for the function } f(x) = x^2 + 3x + 3 \text{ on the}$ $C) -3, -2 \qquad D) 0, -\frac{5}{2}$ The find the limit some other way. $C) \approx \qquad D) 2$ where line together with the zeros of the first derivative. $B) = \frac{B}{(-14 + 12 - 10 - 8 - 6 - 4 - 2 - 0 - 2 - 4 - 6 - 8 - 10)}$ $B) r = 2t + 6t + 13$ $A = 24$	251) 252) 253) 254)
Find the derivative at each critical point and determine the $247) y = \begin{cases} -x^2 - 3x + 6, & x \le 1 \\ -x^2 + 9x - 6, & x > 1 \end{cases}$ A) Critical Pt derivative Extremum Value $\overline{x = \frac{3}{2}} 0 \text{local max} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{33}{4}$ C Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \text{local max} \frac{57}{4}$ C Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \text{local max} \frac{57}{4}$ C Critical Pt derivative Extremum Value $\overline{x = -\frac{3}{2}} 0 \text{local min} \frac{33}{4}$ $x = 1 \text{undefined local max} \frac{57}{4}$ C Use a computer algebra system (CAS) to solve the given in 248) y' = 10x^2 \sin x, y(0) = 1 A) $y = -10(x^2 - 2) \cos x + 20x \sin x - 19$ C) $y = -10x \cos x + 10 \sin x + 1$ Use function's extreme values in the given domain values, if any, are absolute. 249) f(x) = x^2 - 6x, -x < x \le 6 A) Local minimum: (3, -9); Local and absolute minimum: (3, -9); Local in D)	e local extreme values. B) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{0}{0} \frac{10 \text{ cal max}}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined} \qquad 10 \text{ cal max}} \frac{33}{4}$ $x = -\frac{9}{2} \qquad 0 \qquad 10 \text{ cal max}} \frac{57}{4}$ D) $\frac{Critical Pt}{x = -\frac{3}{2}} \frac{0}{0} \frac{10 \text{ cal max}}{10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined} \qquad 10 \text{ cal max}} \frac{33}{4}$ $x = 1 \qquad \text{undefined} \qquad 10 \text{ cal max}} \frac{33}{4}$ $x = \frac{9}{2} \qquad 0 \qquad 10 \text{ cal max}} \frac{57}{4}$ mitial value problem. B) $y = -10x \sin x \cos x + 10 \sin^2 x + 10x^2 + 1$ D) $y = -10 \cos x^2 + 11$ n, and say where they are assumed. Tell which of and absolute maximum: (6, 0) maximum: (6, 0) maximum: (6, 0) (C) 0 D) 5	247) 248) the extreme 249) 250)	Find the derivative at each critical point and deter $251) y = x(1 - x^{2})$ A) Critical Pt. derivative [Extremum]V x = -0.58 0 local max -4 x = 0.58 0 local min 0 C) Citical Pt. derivative [Extremum]V x = 0.58 0 local min 0 C) Citical Pt. derivative [Extremum]V x = 0.58 0 local min -6 Give an appropriate answer. 252) Find the value or values of c that satisfy- interval [-3, -2]. A) $-\frac{5}{2}$ B) $-\frac{5}{2}, \frac{5}{2}$ UHopital's rule does not help with the given limit 253) $\lim_{x \to \infty} \frac{\sqrt{4x+1}}{\sqrt{x+9}}$ A) 0 B) 4 Plot the zeros of the given polynomial on the num 254) $y = (x-5)(x+4)^{2}$ $\frac{-44-12-10-8-6-4-2}{-4-2}$ 0 $\frac{2}{2}$ $\frac{4}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) $\frac{-44-12-10-8-6-4-2}{-4-2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) $\frac{2}{-44-12-10-8-6-4-2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) $\frac{2}{-44-12-10-8-6-4-2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) $\frac{2}{-44-12-10-8-6-4-2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) C) $\frac{1}{-44-12-10-8-6-4-2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ $\frac{8}{10}$ A) C) C) C) C) C) C) C) C) C) C	mine the local extreme values. B) Critical Pt. Iderivative [Extremum Value $x = 0.58$ 0 local min 0.37 alue D) Critical Pt. Iderivative [Extremum Value 0.38 $x = -0.58$ 0 local min 0.38 x = -0.58 0 local max 0.38 x = -0.58 0 local max 0.38 x = -0.58 0 local max 0.38 $(b) - f(a) = f'(c)$ for the function $f(x) = x^2 + 3x + 3$ on the C) $-3, -2$ D) $0, -\frac{5}{2}$ t. Find the limit some other way. C) ∞ D) 2 aber line together with the zeros of the first derivative. B) D Comparison of the function $f(x) = x^2 + 3x + 3 = 0$ the first derivative. B) D Comparison of the first derivative. B) D Comparison of the first derivative. B) Comparison of the first derivative. B) Comparison of the first derivative. B) Comparison of the first derivative. C) $x = 2t + 6t + 13$ D) $r = \frac{4}{-5t^5} + \frac{24}{5}t - 3$	251) 252) 253) 254)

Use Newton's method to estimate the requested solution. 280) $3x^2 + 2x - 1 = 0$; $x_0 = 1$: Find the right-hand	d solution.	280)	286) Find the number of units given the following equa	s that must be produced ations for revenue and co	and sold in order to yie ost:	ld the maximum profit,	286)
A) 0.50 B) 0.33	C) 0.85 D) 0.35	····	R(x) = 4x $Q(x) = 0.001x^2 + 1.2x + 10$	0.			
Find the absolute extreme values of each function of 281 f(x) = 2x = 3 = 2 < x < 4	n the interval.	281)	A) 2800 units	B) 5200 units	C) 2600 units	D) 1400 units	
A) Maximum is 5 at $x = -2$; minimum value	ue is -1 at $x = 4$	201)	Find a value of a so that f is contin $\begin{cases} x^2 + 5, & x < x < x < x < x < x < x < x < x < x$	uous at c, or indicate th 0	iis is impossible.		
B) Maximum is 11 at x = -4; minimum va C) Maximum value is 5 at x = 4; minimum	lue is -7 at x = 2 n value is -7 at x = -2		287) $f(x) = \begin{cases} a, & x = \\ -4(x-1) + 1, & x > \end{cases}$	0; c = 0 0			287)
D) Maximum is 11 at $x = 4$; minimum value	ue is -1 at $x = -2$		A) 5	B) Impossible	C) -4	D) -5	
Find the most general antiderivative. $282) \int \frac{x\sqrt{x} + \sqrt{x}}{x^2} dx$		282)	Find the largest open interval whe 288) Decreasing $y = \frac{1}{x^2} + 7$	ere the function is chang	ging as requested.		288)
A) $2\sqrt{x} - \frac{2}{\sqrt{x}} + C$	B) $-\frac{\sqrt{x}}{2} - \frac{3\sqrt{x}}{2} + C$		A) (7, ∞)	B) (-7, 7)	C) (-7, 0)	D) (0, ∞)	
с) с	D) $\frac{2}{\sqrt{x}} - 2\sqrt{x} + C$		Solve the problem. 289) A long strip of sheet met at right angles to the base	al 12 inches wide is to b e. If the trough is to have	e made into a small trou e maximum capacity, ho	igh by turning up two sides w many inches should be	289)
Solve the problem.			turned up on each side? A) 3 inches	-	B) 6 inches		
283) f(x) = 3x ² + 2x - 14 is continuous on [4, 8] as Value Theorem, there is at least one point c	nd differentiable on (4, 8). Then, according to the Mean in (4, 8) at which	283)	C) 4 inches		D) 4 inches on one	side, 5 inches on the other	
A) $f'(c) = 38$ B) $f'(c) = 6$	C) $f(c) = 38$ D) $f(c) = 6$		Find the extreme values of the fun 290) $y = x^3 - 12x + 2$	action and where they o	ccur.		290)
Use differentiation to determine whether the integra 284) $\int (7x+6)^{-2} dx = -\frac{(7x+6)^{-1}}{4} + C$	al formula is correct.	284)	A) Local maximum at ((2, -14), local minimum a	at (-2, 18).		2507
A) Yes	B) No		B) Local maximum at (C) Local maximum at ((0, 0). (–2, 18), local minimum a	at (2, -14).		
Answer each question appropriately.			D) None				
285) Find the standard equation for the position a coordinate line. The following properties d ² s	s of a body moving with a constant acceleration a along are known:	285)	Use l'Hopital's Rule to evaluate th 291) $\lim_{X \to \infty} \frac{8x^2 - 5x + 3}{12x^2 + 3x + 11}$	e limit.			291)
$\frac{1}{dt^2} = a,$			A) $\frac{3}{2}$	B) 1	C) $\frac{2}{3}$	D) $-\frac{2}{3}$	
ii. $\frac{ds}{dt} = v_0$ when $t = 0$, and			Use l'Hopital's rule to find the lim	iit.			
III. $s = s_0$ when $t = 0$, where t is time, s_0 is the initial position, and	d v ₀ is the initial velocity.		292) $\lim_{x \to \infty} \frac{4x+7}{7x^2+9x-9}$				292)
A) $s = \frac{at^2}{2} - v_0t - s_0$	B) $s = at^2 + v_0t + s_0$		$\chi \rightarrow \infty$ 7 $\chi \rightarrow + 3\chi = 3$ A) 1	B) $\frac{4}{-}$	C) 0	D) =	
C) $s = \frac{at^2}{2} + s_0$	D) $s = \frac{at^2}{2} + v_0t + s_0$			7		7	
Solve the problem.			Find a value of a so that f is contin	uous at c. or indicate th	is is impossible.		
Solve the problem. 293) Given the velocity and initial position of a body's position at time t.	body moving along a coordinate line at time t, find the	293)	Find a value of a so that f is contin 297) $f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x \neq -2 \end{cases}$	nuous at c, or indicate th 4	is is impossible.		297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19+7, s(0) = 8 v = 0	body moving along a coordinate line at time t, find the	293)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x \neq -3 \\ a, & x = -4 \end{cases}$	auous at c, or indicate th 4 -4; c = -4 B) 4	is is impossible.	D) -5	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{12}{2}t^2 + 7t - 8c_1 = -\frac{19}{2}t^2 - 7t - 6$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$	293)	Find a value of a so that f is contin 297) $f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x \neq -3 \\ a, & x = -4 \\ A \end{pmatrix}$ Impossible Solve the problem.	auous at c, or indicate th 4 4; c = -4 B) 4	is impossible. C) –4	D) -5	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the streme values of the function are streme values of the function and where the streme values of the function are	body moving along a coordinate line at time t, find the B) $s=-19t^2+7t+8$ D) $s=\frac{19}{2}t^2+7t-8$ hey occur.	293)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x \neq -\\ a, & x = -\\ A \end{cases}$ M Impossible Solve the problem. 298) Suppose that $c(x) = 4x^3 - \\ that will minimize the aw A) 94 items$	Auous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost verage cost of making x i	i is is impossible. C) -4 t of manufacturing x iter items.	D) -5 ns. Find a production level	297) 298)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$.	body moving along a coordinate line at time t, find the B) s = $-19t^2 + 7t + 8$ D) s = $\frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1.	293)	Find a value of a so that f is continuation 297) $f(x) = \begin{cases} -\frac{x+4}{-5 x+4 }, & x \neq -\frac{x+4}{-5 x+4 }, & x \neq -\frac{x}{-5 x+4 } \end{cases}$ A) Impossible Solve the problem. 298) Suppose that $c(x) = 4x^3 - \frac{x+3}{-5 x+4 }$ that will minimize the average of the system of the product o	uous at c, or indicate th 4 4; c = -4 B) 4 - 30x ² + 9875x is the cost retrage cost of making x i action level that will min	tis is impossible. C) -4 t of manufacturing x iter items. imize average cost.	D) –5 ns. Find a production level	297) 298)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$.	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1. D) None	293) 294)	Find a value of a so that f is contin $297) f(x) = \begin{cases} -\frac{x+4}{-5 x+4 }, & x \neq -\frac{x+4}{-5 x+4 }, & x \neq -\frac{x}{-5 x+4 }, & x \neq -\frac{x}{-$	tuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost vertage cost of making x i action level that will min	 c) -4 c) -4 t of manufacturing x iter items. imize average cost. 	D) -5 ns. Find a production level	297) 298)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t - 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general anticherivative.$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None	293) 294)	Find a value of a so that f is contin $297) f(x) = \begin{cases} -\frac{x+4}{-5 x+4 }, & x \neq -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ b, & x = -\frac{1}{2$	tuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost verage cost of making x i action level that will min to you enter the water if	is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 me	D) –5 ns. Find a production level ter cliff? (Use	297) 298) 299)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the most general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$	293) 294) 295)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{1}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avant (x) = 4x^3 - that will minimize the avant (x) = 4x^3 - that will minimize the avant (x) = 0.5 m ($	nuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i indication level that will min lo you enter the water if B) 17 m/sec	tis is impossible. C) -4 t of manufacturing x iter titems. imize average cost. you jump from a 15 mer C) -17 m/sec	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec	297) 298) 299)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19+7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t - 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$	293) 294) 295)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix}$ Impossible Solve the problem. 298) Suppose that $c(x) = 4x^3 - 4$	tuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost retrage cost of making x i action level that will min by you enter the water if B) 17 m/sec ret the function is changen ret the function is changen	c) -4 c) -4 t of manufacturing x iter tems. imize average cost. you jump from a 15 mer c) -17 m/sec ging as requested.	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec	297) 298) 299)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t - 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$	293) 294) 295)	Find a value of a so that f is contin $297) f(x) = \begin{cases} -\frac{x+4}{-5 x+4 }, & x = -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ a, & x = -\frac{1}{2} \\ b = \frac{1}{2} \\ b = $	tuous at c, or indicate th 4 4; c = -4 B) 4 -30x ² + 9875x is the cost verage cost of making x i action level that will min b) 17 m/sec tree the function is chang $\frac{1}{3}$ B) (- ∞ , -3)	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 mer C) -17 m/sec ging as requested. C) (3, ∞) 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (-∞, 3)	297) 298) 299) 300)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t + 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determine 296) y = \int_{0}^{8} -x, x < 0$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7t + C$ ine the local extreme values.	293) 294) 295) 295)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 -that will minimize the avA) 94 itemsB) There is not a produC) -79 itemsD) 9875 items299) At about what velocity dg = 9.8 m/sec2.)A) -8.5 m/secFind the largest open interval whe300) Decreasing f(x) = -\sqrt{x}.A) (-3, \infty)Use differentiation to determine w$	the function is character than the function is characterized by $(-\infty, -3)$ whether the integral form	is is impossible. C) -4 t of manufacturing x iter items. imize average cost. imize average cost. () -17 m/sec ging as requested. C) (3, ∞) mula is correct.	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (-∞, 3)	297) 298) 299) 300)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t - 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = -2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determint 296) y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7t + C$ ine the local extreme values.	293) 294) 295) 296)	Find a value of a so that f is continuation 2977 , $f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{1}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{cases}$ Impossible Solve the problem. 298) Suppose that $c(x) = 4x^3 - \frac{1}{5}$ that will minimize the average of the second	nuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i netion level that will min to you enter the water if B) 17 m/sec ere the function is chang + 3 B) $(-\infty, -3)$ whether the integral form sin x + C	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 mer C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. 	D) –5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (–∞, 3)	297) 298) 299) 300) 301)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the most general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative at each critical point and determint 296) $y = \begin{cases} 8 - x, & x < 0\\ 8 + 7x - x^2, & x \ge 0 \end{cases}$ A) Critical Pt. derivative [Extremum Value of the section	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7t + C$ ine the local extreme values.	293) 294) 295) 296)	Find a value of a so that f is continu $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - \\ that will minimize the avant of the avant of the second second$	tuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost rerace cost of making x i action level that will min to you enter the water if B) 17 m/sec ret the function is chang +3 B) (- ∞ , -3) whether the integral form sin x + C	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 mer C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No 	D) –5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (–∞, 3)	297) 298) 299) 300) 301)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the most general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative tack critical point and determind 296) $y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}$ A) $\frac{\text{Critical Pt. derivative Extremum Value x = 0 \\ x = 0 \\ y = 1 \end{bmatrix}$ (Lerivative Extremum Value x = 0 \\ y = 1 \end{bmatrix}	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values.	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix}$ Impossible Solve the problem. 298) Suppose that $c(x) = 4x^3 - that will minimize the avance of the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 299) At about the problem. 299) At about what velocity of g = 9.8 m/sec2. A) -8.5 m/sec Find the largest open interval when 300) Decreasing f(x) = -\sqrt{x}.A) (-3, \infty)Use differentiation to determine we301) \int x \sin x dx = -x \cos x + A) YesFind the absolute extreme values of302) F(x) = \frac{3}{2}(x - 3x < 8)$	tuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost vertage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is change + 3 B) (- ∞ , -3) whether the integral form sin x + C of each function on the	 is is impossible. C) -4 t of manufacturing x iter tems. imize average cost. you jump from a 15 mer C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval. 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (-x, 3)	297) 298) 299) 300) 301)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t + 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determine 296) y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}A)Critical Pt derivative Extremum Value x = \frac{9}{2} 0 undefined local max \frac{113}{4}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. <u>re</u>	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 -that will minimize the avA) 94 itemsB) There is not a produC) -79 itemsD) 9875 items299) At about what velocity dig = 9.8 m/sec2.A) -8.5 m/secFind the largest open interval whe300) Decreasing f(x) = -\sqrt{x}:A) (-3, \infty)Use differentiation to determine with301) \int x \sin x dx = -x \cos x +A) YesFind the absolute extreme values of302) F(x) = \sqrt[3]{x}; -3 \le x \le 8A) Maximum = (-5, 2).$	nuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is chang + 3 B) $(-\infty, -3)$ whether the integral form sin x + C of each function on the and Minimum = $(0, 0)$	is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 mer C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval.	D) –5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (–∞, 3)	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determint296) y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \\ \\ 8 - 7x - x^2, & x \ge 0 \end{cases}A)Critical Pt derivative Extremum Valuex = \frac{9}{2} 0 local max \frac{113}{4}B)Critical Pt derivative Extremum Value(5) \frac{11}{2}x^4 - \frac{7}{2}x^2 - \frac{1}{2}x^4 - \frac{7}{2}x^2 - \frac{1}{2}x^4 - \frac{7}{2}x^4 - $	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. <u>re</u>	293) 294) 295) 296)	Find a value of a so that f is continu $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ -3 , x=-\\ A & x=-\\ B & x=-\\ B & x=-\\ A & x=-\\ B & x=-\\ A &$	nuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i inction level that will min to you enter the water if B) 17 m/sec ere the function is chang +3 B) $(-\infty, -3)$ vhether the integral form sin x + C of each function on the and Minimum = $(0, 0)$ und Minimum = $(8, 2)$	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 me C) -17 m/sec ging as requested. (C) (3, ∞) mula is correct. B) No interval. 	D) –5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (–∞, 3)	297) 298) 299) 300) 301) 302)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -2$. Find the most general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative acac critical point and determints 296) $y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \\ x = 0 \\ 0 \\ x = 0 \end{cases}$ Indefined local mints $\frac{8}{14}$ B) $\frac{Critical Pt. derivative}{x = 8}$ Indefined local mints $\frac{8}{14}$ B) $\frac{Critical Pt. derivative}{x = 8}$ Indefined local mints $\frac{8}{14}$ B) $\frac{Critical Pt. derivative}{x = 8}$ Indefined local mints $\frac{8}{14}$ B) $\frac{Critical Pt. derivative}{x = 8}$ Indefined local mints $\frac{8}{14}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. <u>re</u>	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the available A) 94 items B) There is not a produ C) -79 items D) 9875 items 299) At about what velocity di g = 9.8 m/sec2. A) -8.5 m/sec Find the largest open interval whe 300) Decreasing f(x) = -\sqrt{x}A) (-3, \infty)Use differentiation to determine with301) \int x \sin x dx = -x \cos x + A) YesFind the absolute extreme values of302) F(x) = \sqrt[3]{x}; -3 \le x \le 8A) Maximum = (6, 2),B) Maximum = (6, 2), aC) Maximum = (8, 2), a$	tuous at c, or indicate th 4 4; c = -4 B) 4 - $30x^2 + 9875x$ is the cost vertage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is chang +3 B) (- ∞ , -3) whether the integral for sin x + C of each function on the and Minimum = (0, 0) und Minimum = (0, 0) und Minimum = (0, 0)	iis is impossible. C) −4 t of manufacturing x iter iimize average cost. you jump from a 15 mer C) −17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval.	D) –5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (–∞, 3)	297) 298) 299) 300) 301) 302)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{10}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the most general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative at cach critical point and determine 296) $y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}$ A) Critical Pt. Iderivative Extremum Value $x = \frac{9}{2}$ 0 local max $\frac{113}{4}$ B) Critical Pt. Iderivative Extremum Value $x = 8$ undefined local min $\frac{8}{x} = \frac{9}{2}$ 0 local max $\frac{81}{4}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. <u>re</u>	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the second $	tuous at c, or indicate th 4 4; c = -4 B) 4 - 30x ² + 9875x is the cost retrage cost of making x i inction level that will min to you enter the water if B) 17 m/sec tere the function is chang $\frac{1}{+3}$ B) (- ∞ , -3) whether the integral form sin x + C of each function on the and Minimum = (0, 0) and Minimum = (0, 0) and Minimum = (0, 0) to you enter the water is b) (0, 0) and enter the water is	 is is impossible. C) -4 tof manufacturing x iter terns. uimize average cost. you jump from a 15 me C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval. you jump from a 15 me 	D) -5 ms. Find a production level ter cliff? (Use D) 2 m/sec D) ($-\infty$, 3) ter cliff? (Use g = 9.8 m/	297) 298) 299) 300) 301) 302) 302)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determing 296) y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}A)Critical Pt. derivative Extremum Value x = \frac{9}{2} 0 local max \frac{113}{4}B)Critical Pt. derivative Extremum Value x = 0 0 local max \frac{81}{4}C)Critical Pt. derivative Extremum Value x = 0 0 local max \frac{81}{4}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. $\frac{12}{2}$	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{cases}$ Solve the problem. 298) Suppose that $c(x) = 4x^3 -$ that will minimize the av A) 94 items B) There is not a produ C) -79 items D) 9875 items 299) At about what velocity d g = 9.8 m/sec ² . A) -8.5 m/sec Find the largest open interval whe 300) Decreasing $f(x) = -\sqrt{x}$ A) (-3, ∞) Use differentiation to determine w 301) $\int x \sin x dx = -x \cos x +$ A) Yes Find the absolute extreme values of 302) $F(x) = \sqrt[3]{x}; -3 \le x \le 8$ A) Maximum = (6, 2), B) Maximum = (6, 2), D) Maximum = (8, 2), a Solve the problem. 303) At about what velocity d sec ² . A) 17 m/sec	nuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i inction level that will min to you enter the water if B) 17 m/sec tree the function is chang + 3 B) $(-\infty, -3)$ whether the integral form sin x + C of each function on the and Minimum = (0, 0) und Minimum = (0, 0) ind Minimum = (0, 0) ind Minimum = (0, 0) ind Minimum = (0, 0) b) you enter the water is B) 2 m/sec	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 me (C) -17 m /sec ging as requested. (C) (3, ∞) mula is correct. B) No interval. 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (- ∞ , 3) ter cliff? (Use g = 9.8 m/ D) -8.5 m/sec	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the extreme values and the extrement of the function of the func	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. $\frac{12}{3}$	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4i }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 299) At about what velocity of g = 9.8 m/sec2. A) -48.5 m/sec Find the largest open interval whe 300) Decreasing f(x) = -\sqrt{x}:A) (-3, \infty)Use differentiation to determine was 301 \int x \sin x dx = -x \cos x + A) YesFind the absolute extreme values of 302 F(x) = \sqrt[3]{x}; -3 \le x \le 8A) Maximum = (6, 2), B) Maximum = (8, 2), aSolve the problem.303 At about what velocity of sec2.A) 17 m/secUse l'Hôpital's rule to find the lim$	tuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost vertage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is chang +3 B) $(-\infty, -3)$ whether the integral for sin x + C of each function on the and Minimum = (0, 0) und Minimum = (0, 0) und Minimum = (0, 0) to you enter the water is B) 2 m/sec uit.	 is is impossible. C) -4 t of manufacturing x iter timize average cost. you jump from a 15 me C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval. you jump from a 15 me C) -17 m/sec 	D) −5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (−∞, 3) ter cliff? (Use g = 9.8 m/ D) −8.5 m/sec	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t - 8$ C) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = 2$. Find the emost general antiderivative. 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative at each critical point and determine 296) $y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}$ A) $\frac{Critical Pt. [derivative [Extremum] Value x = 0] 0 local max [113] 4}{x = 8 undefined local min [8] x = 0] 0 local max [81] 4}$ B) $\frac{Critical Pt. [derivative [Extremum] Value x = 0] 0 local max [81] 4}{x = 0 0 local max [81] 4}$ D) D	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at x = 1. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. $\frac{12}{2}$	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \} Impossible \end{cases}$ Solve the problem. 298) Suppose that $c(x) = 4x^3 - that will minimize the avance of the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 299) At about what velocity of g = 9.8 m/sec2. A) -8.5 m/sec Find the largest open interval when 300) Decreasing f(x) = -\sqrt{x}:A) -8.5 m/secFind the largest open interval when301) \int x \sin x dx = -x \cos x + A) YesFind the absolute extreme values of302) F(x) = \sqrt[3]{x}; -3 \le x \le 8A) Maximum = (8, 2), aC) Maximum = (8, 2), aD) Maximum = (8, 2), a303) At about what velocity of sec2.A) 17 m/secUse l'Hôpital's rule to find the lim304) \lim_{x\to 0} \frac{\sin 6x}{\tan 8x}$	tuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost vertage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is change + 3 B) $(-\infty, -3)$ whether the integral form sin x + C of each function on the and Minimum = (0, 0) and Minimum = (0, 0) by 2 m/sec b 2 m/sec b 3 m/sec	 is is impossible. C) -4 e) of manufacturing x iter terms. imize average cost. you jump from a 15 me (C) -17 m/sec ging as requested. (C) (3, ∞) mula is correct. B) No interval. you jump from a 15 me (C) -17 m/sec 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) $(-\infty, 3)$ ter cliff? (Use g = 9.8 m/ D) -8.5 m/sec	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, s(0) = 8 A) $s = -\frac{19}{2}t^2 + 7t + 8$ Find the extreme values of the function and where the 294) $y = x^3 - 3x^2 + 5x - 6$ A) The minimum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. C) The maximum is 2 at $x = -1$. Find the derivative at each critical point and determing 295) $\int (6x^3 + 7x + 3) dx$ A) $6x^4 + 7x^2 + 3x + C$ C) $\frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + C$ Find the derivative at each critical point and determing 296) $y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \end{cases}$ A) Critical Pt. [derivative [Extremum] Value $x = 8$ undefined local min $\frac{8}{4}$ C) Critical Pt. [derivative [Extremum] Value $x = 0$ local max $\frac{81}{4}$ C) Critical Pt. [derivative [Extremum] Value $x = \frac{7}{2}$ lo local max $\frac{81}{4}$ D) Critical Pt. [derivative [Extremum] Value $x = \frac{7}{2}$ lo local max $\frac{81}{4}$ D) Critical Pt. [derivative [Extremum] Value $x = \frac{7}{2}$ lo local max $\frac{81}{4}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. $\frac{12}{2}$ $\frac{12}{2}$	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the second sec$	nuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost rerage cost of making x i inction level that will min to you enter the water if B) 17 m/sec ere the function is chang + 3 B) $(-\infty, -3)$ vhether the integral form sin x + C of each function on the and Minimum = (0, 0) und Minimum = (0, 2) und Minimum = (0, 0) ind Minimum = (0, 0) b) 2 m/sec iit. B) $\frac{4}{3}$	 is is impossible. c) -4 to f manufacturing x iteritems. uimize average cost. you jump from a 15 me (c) -17 m/sec ging as requested. (c) (3, ∞) mula is correct. B) No interval. you jump from a 15 me (c) -17 m/sec C) 0 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (- ∞ , 3) ter cliff? (Use g = 9.8 m/ D) -8.5 m/sec D) $-\frac{3}{4}$	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the 294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the most general antiderivative.295) \int (6x^3 + 7x + 3) dxA) 6x^4 + 7x^2 + 3x + CC) \frac{3}{2}x^4 + \frac{7}{2}x^2 + 3x + CFind the derivative at each critical point and determints 296 y = \begin{cases} 8 - x, & x < 0 \\ 8 + 7x - x^2, & x \ge 0 \\ 4 + \frac{7}{2}x^2 + 3x + C \end{cases}Find the derivative at each critical point and determints \frac{113}{4}B) \frac{Critical Pt. derivative}{x = 0} local max \frac{113}{4}B) \frac{Critical Pt. derivative}{x = 0} local max \frac{81}{4}C) \frac{Critical Pt. derivative}{x = 0} local max \frac{81}{4}D) \frac{Critical Pt. derivative}{x = 0} local max \frac{81}{4}$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ time the local extreme values. <u>re</u> <u>re</u>	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4 }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the second of the sec$	tuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cost rerace cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is chang +3 B) $(-\infty, -3)$ vhether the integral form sin x + C of each function on the and Minimum = (0, 0) and Minimum = (0, 0) and Minimum = (0, 0) and Minimum = (0, 0) (0 you enter the water is B) 2 m/sec iit. B) $\frac{4}{3}$	 is is impossible. C) -4 t of manufacturing x iter items. imize average cost. you jump from a 15 me C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval. you jump from a 15 me C) -17 m/sec C) 0 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (- ∞ , 3) ter cliff? (Use g = 9.8 m/ D) -8.5 m/sec D) $-\frac{3}{4}$	297)
Solve the problem. 293) Given the velocity and initial position of a body's position at time t. v = -19t + 7, $s(0) = 8A) s = -\frac{19}{2}t^2 + 7t - 8C) s = -\frac{19}{2}t^2 + 7t + 8Find the extreme values of the function and where the294) y = x^3 - 3x^2 + 5x - 6A) The minimum is 2 at x = -1.C) The maximum is 2 at x = -1.C) The maximum is 2 at x = 2.Find the extreme values and the extrement of the function of the extrement of the extr$	body moving along a coordinate line at time t, find the B) $s = -19t^2 + 7t + 8$ D) $s = \frac{19}{2}t^2 + 7t - 8$ hey occur. B) The maximum is 2 at $x = 1$. D) None B) $18x^4 + 14x^2 + 3x + C$ D) $18x^2 + 7 + C$ ine the local extreme values. $\frac{12}{2}$	293) 294) 295) 296)	Find a value of a so that f is contin $297) f(x) = \begin{cases} \frac{x+4}{-5 x+4i }, & x=-\\ a, & x=-\\ A \end{pmatrix} Impossible Solve the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 298) Suppose that c(x) = 4x^3 - that will minimize the avance of the problem. 299) At about what velocity of g = 9.8 m/sec2. A) -4.5 m/sec Find the largest open interval whe 300) Decreasing f(x) = -\sqrt{x}:A) (-3, \infty)Use differentiation to determine walcower of the absolute extreme values of a solute extreme values of 302 F(x) = \sqrt[3]{x}; -3 \le x \le 8A) Maximum = (8, 2), aC) Maximum = (8, 2), aSolve the problem.303) At about what velocity of sec2.A) 17 m/secUse lifeoptial's rule to find the lima304 \lim_{x \to 0} \frac{\sin 6x}{\tan 8x}A) \frac{3}{4}$	tuous at c, or indicate th 4 4; $c = -4$ B) 4 - $30x^2 + 9875x$ is the cosl vertage cost of making x i action level that will min to you enter the water if B) 17 m/sec tree the function is chang +3 B) $(-\infty, -3)$ vhether the integral for sin x + C of each function on the and Minimum = (0, 0) und Minimum = (0, 0) und Minimum = (0, 0) to you enter the water is B) 2 m/sec tit. B) $\frac{4}{3}$	 is is impossible. C) -4 t of manufacturing x iter imize average cost. you jump from a 15 me C) -17 m/sec ging as requested. C) (3, ∞) mula is correct. B) No interval. you jump from a 15 me C) -17 m/sec C) 0 	D) -5 ns. Find a production level ter cliff? (Use D) 2 m/sec D) (- ∞ , 3) ter cliff? (Use g = 9.8 m/ D) -8.5 m/sec D) - $\frac{3}{4}$	297) 298) 299) 300) 301) 302) 303) 304)

$\begin{aligned} \begin{array}{c} & \text{def} \\ \\ & \text{def} \\ & \text{def} \\ & \text{def} \\ & \text{def} \\ \\ & \text{def} \\ & \text{def} \\ &$								
$ \begin{aligned} \int_{ _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} _{t=1}^{2} $	olve the problem. 305) A company is constructing an open-top, square-be volume of 41 ft ³ . What dimensions yield the minin	ased, rectangular metal tank that will have a num surface area? Round to the nearest tenth, if	305)	312) The positions of two p and t in seconds.	articles on the s-axis are	$es_1 = \sin t \text{ and } s_2 = \sin \left(t + \frac{\pi}{4} \right)$, with s ₁ and s ₂ in meter	rs 312)
$\begin{aligned} \begin{array}{c} \begin{array}{c} \left $	A) 4.3 ft by 4.3 ft. by 2.2 ft C) 9.1 ft by 9.1 ft. by 0.5 ft	B) 5 ft by 5 ft. by 1.7 ft D) 3.4 ft by 3.4 ft. by 3.4 ft		At what time(s) in the A) $t = \frac{1}{2}\pi$ and $t = \frac{3}{2}\pi$	interval $0 \le t \le 2\pi$ do the	e particles meet? B) $t = \frac{3}{8}\pi$ and $t = \frac{11}{8}\pi$	τ	
$a = \frac{1}{2} $	nd the curve $y = f(x)$ in the xy-plane that has the given $pr_{d^2y}^{A^2}$	operties.		C) $t = \frac{3}{4}\pi$ and $t = \frac{11}{4}$:	π	D) $t = \pi$ and $t = 2\pi$		
$A_{1} = b^{1} + b + b^{1} + b + b^{1} + b + b + b + b + b + b + b + b + b + $	306) $\frac{d^2y}{dx^2} = 24x$ and the graph of y passes through the p	point (0,1) and has a horizontal tangent there.	306)	Find an antiderivative of the giv	ven function.			
$\begin{aligned} & \operatorname{Pri}_{[2]} \left[\frac{1}{2} + \frac{1}$	A) $y = 12x^3 + 1$ B) $y = 12x^2 + 1$	C) $y = 4x^3 - 1$ D) $y = 4x^3 + 1$		313) 3 cos 5x				313)
$ \int_{ _{\infty} _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ _{\infty}^{2}} \int_{ $	307) Given the velocity and initial position of a body m body's position at time t.	noving along a coordinate line at time t, find the	307)	A) $\frac{1}{5} \sin 5x$ Find the most general antideriva	B) 3 sin 5x	C) – 15 sin 5x	D) sin 5x	
$ \int_{1}^{1} \int_{2}^{1} \int_{-1}^{1} \int_{-1}^{1}$	v = -5t + 5, s(0) = 15 A) s = $-\frac{5}{2}t^2 + 3t + 15$	B) $s = -5t^2 + 3t + 15$		314) $\int (-2\cos t) dt$				314)
$strend the state is a subjective of any or factor. S(t) = \frac{1}{\sqrt{t}} + \frac{1}{\sqrt{t}$	C) $s = \frac{5}{2}t^2 + 3t - 15$	D) $s = \frac{5}{2}t^2 + 3t - 15$		A) $-\frac{2}{\sin t}$ + C	$B) - \frac{\sin t}{2} + C$	C) -2sin t + C	D) -2 cos t + C	
$\int_{1}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$	and an antiderivative of the given function. $308) - 3 + \frac{1}{2}$	2	308)	Use the maximum/minimum fin 315) $f(x) = 0.1x^3 - 15x^2 + 8x$	nder on a graphing calcu - 10	ulator to determine the appr	oximate location of all	local extr 315)
$ \begin{aligned} effective there is a discuss where the interval term is the result of the solution of the location of t$	$\begin{array}{c} 3007 x = -\frac{1}{6\sqrt{x}} \\ A) - \frac{1}{3x^3} + \frac{1}{3}x^{1/2} \\ B) - \frac{1}{2x^3} + \frac{1}{3}x^{1/2} \end{array}$	C) $-\frac{1}{2x^2} + \frac{1}{3}x^{1/2}$ D) $-\frac{1}{3x^2} + \frac{1}{3}x^{1/2}$		 B) Approximate loca C) Approximate loca D) Approximate loca 	I maximum at 0.267; ap Il maximum at 0.267; ap Il maximum at 0.267; ap	proximate local minimum at approximate local minimum at	99.733 at -0.267	
$ \begin{array}{c} 1 \\ N \\ N \\ 0 \\ the max point atticker determines the second atticker determines thes$	e differentiation to determine whether the integral form $309) \int \sec(2x-1)\tan(2x-1)dx = \frac{\sec(2x-1)}{x} + C$	ula is correct.	309)	D) Approximate loca Find the location of the indicate 316) Minimum	d absolute extremum fo	proximate local maximum at	99.733	316)
dterm of the individue of the indin	A) No	B) Yes			f(x)			010)
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} $	ad the most general antiderivative. 310) $\int \left[\frac{1}{1-x^2} - x^2 - \frac{1}{10} \right] dx$		310)					
$ \begin{array}{c} \operatorname{ref} \operatorname{ref}_{q_{1}} \operatorname{ref}$	$(x^3 + b)$	$x^{-1} x^{6} x + c$		┝┼╀┼┼┤		<u>+</u>		
$\left \int_{a}^{b} \frac{x}{b} \cdot \frac{x}{b} + \frac{1}{b^{2}} + C \\ b + \frac{1}{b^{2}} + C \\ c + \frac{1}{b^{2$	$A) - 3x^{-3} - 3x^{-3} + C$	$\frac{1}{4x^4} - \frac{1}{6} - \frac{1}{10} + C$						
here bereform: 11) Prove the function of 25 the binds a constant acceleration of 20 m/sec ² . Here for the life to 20 m/sec ² A 1-000 m/sec ² by prove the function is below more and the binds of 20 m/sec ² . Here for the life to 20 m/sec ² FF depicts 1, ends for find the line. 11) $\int_{1}^{1} \frac{1}{1} \frac$	C) $\frac{1}{5x^6} - \frac{x^6}{6} - \frac{1}{10x} + C$	D) $\frac{1}{6x^6} - \frac{x^*}{4} + \frac{1}{100} + C$				†		
11) A code the order of bar where of the number a constant acceleration of 30 m/sec ² . How far we	lve the problem.					1		
A) -4500 m/sec D 2250 m/sec D 4500 m/sec D 3305 m/sec A) -4500 m/sec D 2505 m/sec D 3305 m/sec A) $4x - 3$ $0 + x - 3$ $0 +$	311) A rocket lifts off the surface of Earth with a consta rocket be going 2.5 minutes later?	nt acceleration of 30 m/sec ² . How fast will the	311)					
$ \int \int$	A) -4500 m/sec B) 2250 m/sec	C) 4500 m/sec D) 3375 m/sec		A) x = 3	B) x = -3	C) x = -5	D) x = 5	
$ \frac{\operatorname{Pridpits}}{\operatorname{Pridpits}} \operatorname{Pridpits} \operatorname{Pridpits}} = \frac{\operatorname{Pridpits}}{\operatorname{Pridpits}} = \operatorname{Prid$								
$\begin{array}{c} y y y y y y y y y $	se l'Hôpital's rule to find the limit. 317) $\lim_{\theta \to 0} \frac{\sin \theta^7}{\theta}$		317)	Find the location of the indicate 324) Maximum	d absolute extremum fo	or the function.		324)
Induction with the given derivative whose graph passes through the point P. $319 \frac{1}{10^{10} = \infty^{2} - 4}, P(0, 0) = \infty + 1 - 4 - 4 - 1 \\ (C, r(t) = \tan t - 4 - 1) (D, r(t)) = \infty + 1 - 4 - 4 - 1 \\ (C, r(t) = \tan t - 4 - 1) (D, r(t)) = \infty + 1 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5$	A) 0 B) ∞	C) 1 D) -∞		5+ ⁴				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d the function with the given derivative whose graph p_i	asses through the point P.		3				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	318) $\mathbf{r}'(t) = \sec^2 t - 4$, P(0, 0) A) $\mathbf{r}(t) = \sec t \tan t - 4t - 1$	B) r(t) = sec t - 4t - 4	318)		$\left \left \left$			
et rife juit $\frac{1}{9} - \frac{1}{9} - \frac{3 - 3 \cos \theta}{\sin 4 \theta}$ 319 A) \approx B) $\frac{3}{4}$ C) 0 D) 1 sever each question appropriately. 320) Suppose the velocity of a body moving along the s-axis is $\frac{ds}{dt} = 9.8t - 3$. 320 Find the body's displacement over the time interval from t = 2 to t = 6 given that s=s_0 when t=0. A) -22 B) 132.8 D) Not enough information is given. Fund the body's displacement over the time interval from t = 2 to t = 6 given that s=s_0 when t=0. A) -22 B) 132.8 D) Not enough information is given. Further the function satisfies the hypotheses of the Mean Value Theorem for the given interval. 321) $\phi(v) - \sqrt{(1 - t)}$ [-1,5] D) Yes C = $\frac{1}{2}$ A) No B) Yes C = $\frac{1}{2}$ (Vert the violety and initial position of a body moving along a coordinate line at time t, find the solution at time t. 3222 $\frac{ds}{dt} = \cos t - \sin t, \frac{dt}{dt} = 4$ D) s = sin t - cos t + 3 D) s = sin t - cos t + 3 D) s = sin t - cos t + 3 D) s = sin t - cos t + 3 C) $s = \sin t + cos t + 3$ D) s = sin t - cos t + 3 D) s = sin t - cos t + 3 C) $s = \sin t - cos t + 3$ D) waintimum $= (-3, -3)$ and minimum $= (-3, -3)$ and minimum $= (-3, -3)$ (B) Maximum $= (-3, -3)$ and minimum $= (-3, -3)$ (B) Maximum $= (-3, -3)$ and minimum $= (-3, -3)$ (B) Maximum $= (-3, -3)$ (B) Maximu	C) $r(t) = tan t - 4t$	D) $r(t) = \sec t - t - 6$			1 2 3 4 5 ×			
319) $\lim_{\theta \to 0} \frac{\sin 4\theta}{\sin 4\theta}$ 319) $\frac{1}{\theta \to 0} \frac{1}{\sin 4\theta}$ 319) $\frac{1}{\theta \to 0} \frac{1}{\theta \to 0} \frac{1}$	se l'Hôpital's rule to find the limit.							
A) π B) $\frac{1}{4}$ C) 0 D) 1 A) π B) $\frac{1}{4}$ C) 0 D) 1 A) π B) π C) No maximum D) π 4 A) π B) π C) No maximum D) π 4 Find an atticked value of the given function. A) -22 B) 132.8 D) Not enough information is given. A) -22 B) $\pi^2 - \frac{1}{5x^5}$ D) $\frac{x^7}{7} - \frac{1}{5x^5}$ D) $\frac{x^7}{7} - \frac{1}{7x^7}$ D) $\frac{x^7}{6} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{6x^5}$ D) $\frac{x^7}{7} - \frac{1}{5x^5}$ D) $\frac{x^7}{7} - \frac{1}{7x^7}$ D) $\frac{x^7}{6} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{6x^5}$ D) $\frac{x^7}{7} - \frac{1}{5x^5}$ D) $\frac{x^7}{8} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{6x^5}$ D) $\frac{x^7}{8} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{8x^7}$ D) $\frac{x^7}{6} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{8x^7}$ D) $\frac{x^7}{8} - \frac{1}{6x^5}$ B) $\frac{x^7}{8} - \frac{1}{8x^7}$ D)	$\lim_{\theta \to 0} \frac{1}{\sin 4\theta}$		319)					
Find the body's displacement over the time interval from t = 2 to t = 6 given that s=sq when t=0.A) -22B) 132.8C) 144.8D) Not enough information is given.etermine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval.321) s(t) = $\sqrt{(1-t)}$, $[-1,5]$ A) NoB) Yesetermine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval.321) s(t) = $\sqrt{(1-t)}$, $[-1,5]$ A) NoB) Yesetermine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval.322) $\frac{dt}{dt} = \cos t - \sin t, \frac{dt}{2} = 4$ A) NoB) YesA) s = sin t + cos t + 3B) s = 2sin t + 2C) s = sin t + cos t + 3B) s = 2sin t + 2C) s = sin t + cos t + 3B) s = 2sin t + 2A) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3, -3)$ <t< td=""><td>A) ∞ B) $\frac{3}{4}$</td><td>C) 0 D) 1</td><td></td><td>A) x = 1</td><td>B) x = -4</td><td>C) No maximum</td><td>D) x = 4</td><td></td></t<>	A) ∞ B) $\frac{3}{4}$	C) 0 D) 1		A) x = 1	B) x = -4	C) No maximum	D) x = 4	
320) Suppose the velocity of a body moving along the s-axis is $\frac{xx}{dt} = 9.8t - 3$. 320) Find the body's displacement over the time interval from $t = 2$ to $t = 6$ given that $s = s_0$ when $t = 0$. A) -2.2 B) 132.8 C) 144.8 D) Not enough information is given. Solve the function satisfies the hypotheses of the Man Value Theorem for the given interval. 321) $s(0 = \sqrt{t(1 - t)}, [-1,5]$ Solve the problem. 322) $\frac{ds}{dt} = \cos t - \sin t, \frac{d}{2} = 4$ Solve the initial value problem. 322) $\frac{ds}{dt} = \cos t - \sin t, \frac{d}{2} = 4$ Solve the initial value of the tabsolute extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 324) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 325) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 326) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 327) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme values of each function on the interval. 328) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme interval. 329) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme interval. 320) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme interval. 321) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ Solve the initial extreme interval. 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le $	nswer each question appropriately.	ds		Find an antiderivative of the giv	ven function.			
A) -22 B) 132.8 C) 144.8 D) the rough information is given. etermine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. 321) s(t) = $\sqrt{t(1-t)}$. $[-1,5]$ A) No B) Yes 321 A) No B) Yes 322 A) $8 = \sin t + \cos t + 3$ B) $s = 2\sin t + 2$ C) $s = \sin t + \cos t + 5$ D) $s = \sin t - \cos t + 3$ and the absolute extreme values of each function on the interval. 322) $\frac{ds}{=3} = \frac{2}{3} + \frac{5}{5}, -3 \le x \le 3$ 323) A) Maximum = $(-3, 3)$ B) Maximum = $(-3, -3)$ and minimum = $(-3$	320) Suppose the velocity of a body moving along the s	-axis is $\frac{d\theta}{dt} = 9.8t - 3$.	320)	325) $x^6 - \frac{1}{x^6}$				325)
C) 144.8D) Not enough information is given.etermine whether the function satisfies the hypotheses of the Man Value Theorem for the given interval.321) $s(t) = \sqrt{t(1-t)}$. $[-1,5]$ A) NoB) Yesobve the initial value problem.322) $\frac{ds}{dt} = \cos t - \sin t, \frac{d}{2} = 4$ A) $s = \sin t + \cos t + 3$ B) $s = 2\sin t + 2$ C) $s = \sin t + \cos t + 5$ D) $s = \sin t - \cos t + 3$ and the absolute extreme values of each function on the interval.323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ A) Maximum = $\{0, 7\}$; and minimum = $\{0, 3\}$ B) Maximum = $\{-3, -3\}$ and minimum = $\{3, 3\}$	Find the body's displacement over the time interva	B) 132.8 B) 132.8		A) $6x^5 + \frac{1}{6x^5}$	B) $\frac{x^7}{7} + \frac{1}{5x^5}$	C) $\frac{x^7}{7} - \frac{1}{7x^7}$	D) $\frac{x^7}{6} - \frac{1}{6x^5}$	
1321 set hypotheses of the Mean Value Theorem for the given interval.321) set $(1 - t)$, $[-1,5]$ 321)A) NoB) YesA) NoB) Yes322) $\frac{ds}{dt} = \cos t - \sin t, \frac{\pi}{2} = 4$ 322)A) s = sin t + cos t + 3B) s = 2sin t + 2C) s = sin t + cos t + 5D) s = sin t - cos t + 3ad the absolute extreme values of each function on the interval.323)323) $f(x) = \frac{2}{3}x + 5; \neg 3 \le x \le 3$ 323)A) Maximum = $(3, 7)$; and minimum = $(-3, 3)$ 323)B) Maximum = $(-3, -3)$ and minimum = $(3, 3)$ 323)	C) 144.8	D) Not enough information is given.		Solve the problem.				
A) NoB) Yes $v \in \frac{3}{\pi} \sin \frac{4t}{\pi}, s(\pi^2) = 2$ We the initial value problem. $v = \frac{3}{\pi} \sin \frac{4t}{\pi}, s(\pi^2) = 2$ $322 \frac{ds}{ds} = \cos t - \sin t, s(\frac{\pi}{2}) = 4$ $322 \frac{ds}{ds} = \cos t - \sin t, s(\frac{\pi}{2}) = 4$ A) $s = sin t + \cos t + 3$ B) $s = 2sin t + 2$ C) $s = sin t + \cos t + 5$ D) $s = sin t - \cos t + 3$ and the absolute extreme values of each function on the interval. $323 \frac{ds}{-3} + 5; -3 \le x \le 3$ a) Maximum = (3, 7); and minimum = (-3, 3) $323 \frac{ds}{-3} = -2 \frac{ds}{-3} + 5; -3 \le x \le 3$	etermine whether the function satisfies the hypotheses of 321) $s(t) = \sqrt{t(1 - t)}$, $[-1,5]$	the Mean Value Theorem for the given interva	d. 321)	326) Given the velocity and body's position at time	d initial position of a boo t.	dy moving along a coordinat	e line at time t, find the	326)
In the initial value problem.In the form of the second secon	A) No	B) Yes		$v = \frac{8}{\pi} \sin \frac{4t}{\pi}, \ s(\pi^2) = 2$				
$322) \xrightarrow{dt}{dt} - (us t - sut t s \frac{1}{2})^{-4} \qquad 322) \xrightarrow{\pi} \\ A) s = sin t + cos t + 3 \qquad B) s = 2sin t + 2 \\ C) s = sin t + cos t + 5 \qquad D) s = sin t - cos t + 3 \\ add the absolute extreme values of each function on the interval. \\ 323) f(x) = \frac{2}{3}x + 5; -3 \le x \le 3 \qquad 323) \\ A) Maximum = (3, 7); and minimum = (-3, 3) \\ B) Maximum = (-3, -3) and minimum = (3, 3) \\ \hline \\ \end{array}$	live the initial value problem. $222) \frac{ds}{ds} = cost circt \left[\frac{\pi}{3} \right] 4$		333)	A) $s = -2 \cos \frac{4t}{\pi} + 8.2$	134	B) s = 2 cos $\frac{4t}{2}$ + 4		
$\pi = \frac{\pi}{2}$ C) s = sin t + cos t + 5 D) s = sin t - cos t + 3 and the absolute extreme values of each function on the interval. 323) f(x) = $\frac{2}{3}x + 5; -3 \le x \le 3$ A) Maximum = (3, 7): and minimum = (-3, 3) B) Maximum = (-3, -3) and minimum = (3, 3) (-3, -3) and minimum = (3, -3)	$\frac{322}{dt} = \cos t - \sin t, \left(\frac{3}{2}\right) = 4$	R) $s = 2sin t \pm 2$	322)	C) s = $-2 \cos \frac{4t}{4t} + 3.3$	073	D) $s = -2 \cos \frac{4t}{t} + 4$		
and the absolute extreme values of each function on the interval. $323) f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$ $A) Maximum = (3, 7); and minimum = (-3, 3)$ $B) Maximum = (-3, -3) and minimum = (3, 3)$	$C(s) = \sin t + \cos t + 5$	D) $s = sin t - cos t + 3$		π		π		
A) Maximum = $(3, 7)$; and minimum = $(-3, 3)$ B) Maximum= $(-3, -3)$ and minimum = $(3, 3)$	and the absolute extreme values of each function on the in 323) $f(x) = \frac{2}{3}x + 5; -3 \le x \le 3$	terval.	323)					
C) Maximum $(-3, -3)$ and minimum $= (3, 3)$ D) Maximum $= (3, -3)$ and minimum $= (-3, 3)$	A) Maximum = (3, 7): and minimum = (-3, 3) B) Maximum=(-3, - 3) and minimum = (3, 3) C) Maximum (-3, - 3) and minimum = (3, 3) D) Maximum = (3, -3) and minimum = (-3, 3)							

Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
62) $f(x) = 4x - 2x^2 + 3$, $f'(x) = 4 - 4x$ Right-hand solution: $x_1 = 1.5$ $x_n + 1 = x_n - \frac{4x - 2x^2 + 3}{4 - 4x} = \frac{-2x^2 - 3}{4 - 4x}$ therefore $x_2 = 3.7500$ Left-hand solution: $x_1 = -1$ $x_n + 1 = x_n - \frac{4x - 4x^2 + 3}{4 - 4x} = \frac{-2x^2 - 3}{4 - 4x}$ therefore $x_2 = -0.6250$ ID: TCALCI IW 47.2-10 Diff. 0 = Page Ref. 300-306 Objective: (4.7) -Use Networks Method II (c) $r_1 = 2.0783$ $r_2 = 0.0809$ $r_3 = 0.0191$ $r_4 = -1.0783$ ID: TCALCI IW 47.2-6 Diff. 0 = Page Ref. 300-306 Objective: (4.7) -Feck Newton's Method (d) Yes. The value of f' 14x = - c must also be zero since even functions are symmetrical with respect to the y-axis ID: TCALCI IW 41.8-4 Diff. 0 = Page Ref. 326-235 Objective: (4.1) -Know Concepts: Extreme Values	$\begin{cases} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
113	114
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
<equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block>	(e) If he asks for a delivery every x days, then he must order (px) to have enough material for that delivery cycle. The average amount in storage is approximately one-half of the delivery amount, or $\frac{Xx}{2}$. Thus, the cost of delivery and storage for each cycle is approximately costs. Cost per cycle = $d + \frac{px}{2} + x$. We compute the average daily cost (x) by dividing the cost per cycle by the number of days x in the cycle. $(\zeta x) = \frac{d}{x} + \frac{px}{2}$. We find the critical points by determining where the derivative is equal to zero. $\ell(x) = -\frac{d}{x^2} + \frac{p}{2} = 0$ $x = \sqrt{\frac{2d}{p}}$. Therefore, an absolute minimum occurs at $\sqrt{\frac{2d}{p}}$ days. ID TCALCIW 455-1 Diff O Page Ref 279-286 Objective (5). Softw Apps External Optimization (1) $y^{-1} = -cx^{2}(x) \pm \frac{2d}{3}cx(x)cx(x) = cx(x)\left[\frac{2\sqrt{2}}{2}cot(x) - cx(x)\right] = 0 \Rightarrow 1 - \frac{2\sqrt{3}}{2}cos(x) = 0 \Rightarrow \frac{1-\frac{2\sqrt{3}}{2}cos(x)} = 0 \Rightarrow \frac{1-\frac{2\sqrt{3}}{3}cos(x)} = 0 \Rightarrow 1-\frac{2\sqrt$

Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
90) Notice that $g'(x) = \frac{b^2}{x^2 + (x^2 + x^2)^{3/2}}$ is positive for all values of x. Therefore g is increasing everywhere.	94) Find the root of $f(x) = C(x) - R(x) = 299 + 30x^{5/8} - 4x$.
$(b + i(a + x)^{-})^{-1}$ ID: TCALCIIW 4.5.4-4 Diff 0 Proc Pet 720 296	$f'(x) = \frac{75}{4}x^{-3/8} - 4$
Objective: (4.5) •Know Concepts: Extrema/Optimization	x1 = 370
91) L'Hopital's Rule cannot be applied to $\lim_{X \to 0} \frac{\cos x}{1 + 2x}$ because it corresponds to $\frac{1}{1}$ which is not an indeterminate form.	$x_{2} = 370 - \frac{f(370)}{f(370)} = 370 - \frac{299 + 30.370^{5/8} - 4(370)}{75} = 384.04$
ID: TCALC11W 4.6.6-9 Diff: 0 Page Ref: 293-298	
Objective: (4.6) -Know Concepts L Hopital's Kule 92) $f(x) = -3x^2 - 2x + 5$, $f'(x) = -6x - 2$	$x_3 = 384.04 - \frac{f(384.04)}{f(384.04)} = 384.04 - \frac{299 + 30.384.047/8 - 4(384.04)}{25} = 383.94$
Right-hand solution:	4
$x_1 = 0.5$	The break-even point is x = 383.94 tools. ID: TCALC1IW 4.7.4-1
$x_{n+1} = x_n - \frac{-3x^2 - 2x + 5}{-6x - 2} = \frac{-3x^2 - 5}{-6x - 2}$	Diff: 0 rage Ref: 300-306 Objective: (4.7) »Solve Apps: Use Newton's Method
therefore $x_2 = 1.1500$	95) a: both y' and y'' are undefined. b: $y' = 0$ and $y'' > 0$
Left-hand solution:	$\begin{array}{l} \text{d: } \mathbf{y}' = 0 \text{ and } \mathbf{y}'' = 0 \\ \text{e: } \mathbf{y}' = 0 \text{ and } \mathbf{y}'' = 0 \end{array}$
$x_1 = -2$ $x_{-1} = x_{-1} = -\frac{-3x^2 - 2x + 5}{-3x^2 - 5} = -3x^2 - 5$	f: $y' = 0$ and $y'' < 0$ g: $y' < 0$ and $y'' = 0$
-6x - 2 therefore $x_2 = -1.7000$	ID: TCALC11W 4.4.7-7 Diff: 0 Page Ref: 268-275
ID: TCALC11W 4.7.2-2 Diff: 0 Page Ref: 300-306	Objective: (4.4) •Know Concepts: Concavity and Curve Sketching 96) $\lim_{x \to \infty} f(x)g(x) = \lim_{x \to \infty} (x - 3) \frac{2}{(x - 3)^2} = 0$
Objective: (4.7) •Use Newton's Method II (a) No. since $\theta'(x) = \frac{2}{x}(x - 8) \cdot \frac{1}{3}$, which is undefined at $x = 8$.	$x \rightarrow 3$ $x \rightarrow 3$ ID: TCALC11W 4.6.6-6
(b) The derivative is defined and nonzero for all $x \neq 8$.	Diff: 0 Page Ref: 293-298 Objective: (4.6) •Know Concepts L'Hopital's Rule
(c) No, f(x) need not have a global maximum because its domain is all real numbers. Any restriction of f to a closed interval of the form [a, b] would have both a maximum value and a minimum value on the interval.	97) (a) $A = 20 + 20h; V = 20h + 10h^2$
(d) The answers are the same as (a) and (b) with 8 replaced by c. ID: TCALCHW 4.1.8-1 DS(C 0	(b) $\frac{1}{6}$ fr/min
Objective: (4.1) •Know Concepts: Extreme Values	(c) $\frac{1}{3}$ H ² /min ID: TCALC11W 4.8.11-5
	Diff. 0 Page Ref: 308-315 Objective: (4.8) Multi-Part Questions: Applications of Derivatives
	98) As the trucker's average speed was 78 mph, the Mean Value Theorem implies that the trucker must have been going that speed at least once during the trip.
	ID: TCALC11W 4.2.8-2 Diff: 0 Page Ref: 256-261
	Objective: (4.2) «Solve Apps: The Mean Value Theorem
121	122
Answer Key	Answer Key
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y ^{<i>u</i>} = 12ax ² + 6bx + 2c, and quadratics	Answer Key Testname: 155CH4
Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y " = 12ax ² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b ² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b ² - 96ac = 0, then y" has exactly one real root and y has a single inflection point.	Answer Key Testname: 155CH4 109) C ID: TCALC11W 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no inflection points. If 36b² - 96ac = 0, then y " has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCHW 447-5 	Answer Key Testname: 155CH4 109) C ID: TCALCIIW 4.8.1-1 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALCIW 4.4.1-1
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIUW 44.7-5 Diff: 0 Page Ref. 268-275 Objective: (4.4) •Know Concepts: Concavity and Curve Sketching 	Answer Key Testname: 155CH4 109) C ID: TCALC11W 4.8.1-1 Diff: 0 Fage Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALC11W 4.4.1-1 Diff: 0 Fage Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIUW 44.7-5 Diff 0 Page Ref: 268-275 Objective: (44) - Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local 	Answer Key Testname: 155CH4 109 C ID: TCALC11W 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110 C ID: TCALC11W 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111 C ID: TCALC11W 4.6.4-2
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCI1W 44.7-5 Diff: 0 Prage Ref: 268-275 Diff: 0 For the root of the root of the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCI1W 44.7-1 Diff: 0 Prage Ref: 268-275 	Answer Key Testname: 155CH4 109) C ID: TCALCHW 4.8.1-1 Diff 0 Page Ref: 208-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALCHW 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALCHW 4.6.4-2 Diff: 0 Page Ref: 237-298 Objective: (4.6) Find Continuous Extension
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac - 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac - 0, then y" has two real roots and y has exactly two inflection points. II: TCALCIW 44.7-5 Diff. 0 Page Ref: 268-275 Objective: (4.4) •Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points at x = c. ID: TCALCIW 44.7-1 Diff. 0 Page Ref: 268-275 Objective: (4.4) •Know Concepts: Concavity and Curve Sketching 100) Tese neth functions are (x) = x² + 1 and (x) = x² + 1 	Answer Key Testname: 155CH4 109) C ID: TCALC1IW 4.8.1-1 Diff: 0 Page Ref: 208-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALC1IW 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALC1IW 4.6.4-2 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Continuous Extension 112) B ID: TCALC1IW 4.8.7-4
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIW 44.7-5 Diff: 0 Fage Ret: 268-275 Objective: (44) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff: 0 Fage Ret: 268-275 Objective: (44) -Know Concepts: Concavity and Curve Sketching 101) Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 44.6-4 Diff: 0 Page Ret: 728-278 	Answer Key Testname: 155CH4 109) C ID: TCALCIIW 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALCIIW 4.4.1-1 Diff: 0 Page Ref: 288-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALCIIW 4.6.4-2 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Continuous Extension 112) B ID: TCALCIIW 4.8.7-4 Diff: 0 Page Ref: 293-315 Objective: (4.8) Solve Apps: Particle Kinematics I
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac < 0, then y" has no inflection points. If 36b² - 96ac < 0, then y" has two real roots and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has a single inflection point. ID: TCALCIW 44.7-5 Diff: 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101) Two such functions are (fy) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 44.6-4 Diff: 0 Page Ref: 253-238 Objective: (4.6) -Know Concepts L'Hopital's Rule 	Answer Key Testname: 155CH4 109) C ID: TCALCHW 4.8.1-1 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALCHW 4.4.1-1 Diff 0 Page Ref: 238-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALCHW 4.6.4-2 Diff: 0 Page Ref: 239-298 Objective: (4.6) Find Continuous Extension 112) B ID: TCALCHW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 113) C ID: TCALCHW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 113) C
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac - 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac - 0, then y" has exactly one real root and y has a single inflection point. If 36b² - 96ac - 0, then y" has exactly two inflection points. II: TCALCIW 44.7-5 Diff 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIIW 44.7-1 Diff 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101 Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIIW 4.66-4 Diff 0 Page Ref: 283-286 Objective: (4.6) -Know Concepts L'Hopital's Rule 102 D ID: TCALCIIW 4.35-4 Diff 0 Page Ref: 283-287 	Answer Key Testname: 155CH4 109) C D: TCALC11W 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C D: TCALC11W 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C D: TCALC11W 4.6.4-2 Diff: 0 Page Ref: 238-298 Objective: (4.6) Find Continuous Extension 112) B D: TCALC11W 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 13) C D: TCALC11W 4.8.9-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIW 44.7-5 Diff: 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101 Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 46.6-4 Diff: 0 Page Ref: 268-278 Objective: (4.6) -Know Concepts L'Hopital's Rule 102 D ID: TCALCIW 44.5-4 Diff: 0 Page Ref: 268-278 Objective: (4.6) -Know Concepts L'Hopital's Rule 102 D ID: TCALCIW 44.5-4 Diff: 0 Page Ref: 268-276 Objective: (4.6) Find Location of Local Extrema 103 Re 	Answer Key Testname: 155CH4 109 C ID:TCALCIIW 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110 C ID:TCALCIIW 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111 C ID:TCALCIIW 4.6.4-2 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Continuous Extension 112 B ID:TCALCIIW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 113 C ID:TCALCIIW 4.8.9-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 113 C ID:TCALCIIW 4.8.9-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 114 C ID:TCALCIIW 4.8.9-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives 114 C ID:TCALCIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Diff: 0 Page R
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac < 0, then y" has no inflection points. If 36b² - 96ac < 0, then y" has two real roots and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has a single inflection point. ID: TCALCIW 44.7-5 Diff: 0 Page Ret: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101) Two such functions are (fy) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 44.5-4 Diff: 0 Page Ref: 268-275 Objective: (4.6) -Know Concepts: LiPopital's Rule 102) D ID: TCALCIW 44.5-4 Diff: 0 Page Ref: 263-278 Objective: (4.6) -Know Concepts LiPopital's Rule 103 B ID: TCALCIW 44.511-7 Diff: 0 Page Ref: 268-275 	Answer Key Testname: 155CH4 109) C ID: TCALC1IW 4.8.1-1 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALC1IW 4.4.1-1 Diff 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C 112: TCALC1IW 4.6.4-2 Diff: 0 Page Ref: 233-288 Objective: (4.6) Find Continuous Extension 112) B 113: C 114: C 115: TCALC1IW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 113: C 113: C 114: C 115: TCALC1IW 4.8.9-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Concepts: Antiderivatives 114: C 117: CALC1IW 4.8.9-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0. 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac - 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac - 0, then y" has exactly one real root and y has a single inflection point. If 36b² - 96ac - 0, then y" has exactly two inflection points. II: TCALCIW 44.7-5 Diff 0 Page Ref. 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff 0 Page Ref. 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101) Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 44.6-4 Diff 0 Page Ref. 283-286 Objective: (4.6) -Know Concepts L'Hopital's Rule 102) D ID: TCALCIW 44.5-4 Diff 0 Page Ref. 283-287 Objective: (4.3) Find Location of Local Extrema 103) B ID: TCALCIW 48.11-7 Diff 0 Page Ref. 283-287 Objective: (4.4) Multi-Part Questions: Applications of Derivatives 104) C 	Answer Key Testname: 155CH4 109) C ID: TCALC1IW 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALC1IW 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALC1IW 4.6.4-2 Diff: 0 Page Ref: 308-328 Objective: (4.6) Find Continuous Extension 112) B ID: TCALC1IW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 13) C ID: TCALC1IW 4.8.9-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Concepts: Antiderivatives 114) C ID: TCALC1IW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115) A ID: TCALC1IW 4.8.1-8 Diff: 0 Page Ref: 308-315
 Answer Key Testmame: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac - 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIW 44.7-5 Diff 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIW 44.7-1 Diff 0 Page Ref: 268-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101 Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIW 44.6-4 Diff 0 Page Ref: 268-278 Objective: (4.6) -Know Concepts Lifepital's Rule 102 D 103 104 105 105 105 105 105 105 105 105 105 105	Answer Key Testname: 155CH4 109 C ID:TCALCIIW 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110 C ID:TCALCIIW 4.4.1-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111 C ID:TCALCIIW 4.6.4-2 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Continuous Extension 112 B ID:TCALCIIW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 113 C ID:TCALCIIW 4.8.8-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 113 C ID:TCALCIIW 4.8.8-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Problem 115 A ID:TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115 A ID:TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115 A ID:TCALCIW 4.8.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem
 Answer Key Testmame: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y^M = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y^M has no real root and y has no inflection points. If 36b² - 96ac = 0, then y^M has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y^M has two real roots and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y^M has two real roots and y has exactly two inflection points. D: TCALCIW 4427-3 Diff: 0 Page Kef: 288-275 Objective: (4.4) Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local minimum at x = c. D: TCALCIW 447-1 Diff: 0 Page Kef: 288-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101 Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. D: TCALCIW 445-4 Diff: 0 Page Kef: 283-286 Objective: (4.4) -Know Concepts: Litopital's Rule 102 D D: TCALCIW 445-4 Diff: 0 Page Kef: 283-286 Objective: (4.4) Multi-Part Questions: Applications of Derivatives 108 D D: TCALCIW 451-7 Diff: 0 Page Kef: 283-286 Objective: (4.4) Multi-Part Questions: Applications of Derivatives 109 C D: TCALCIW 451-17 Diff: 0 Page Kef: 283-215 Objective: (4.5) Multi-Part Questions: Applications of Derivatives 109 C D: TCALCIW 453-1 Diff: 0 Page Kef: 308-315 Objective: (4.5) Know Concepts: Antiderivatives 	Answer Key Testname: 155CH4 109) C ID:TCALC11W48.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.9) Find Antiderivative 110 C ID:TCALC11W44.1-1 Diff: 0 Page Ref: 238-225 Objective: (4.9) Identify Inflection Points and Local Extrema Given Graph 111 C ID:TCALC11W46.4-2 Diff: 0 Page Ref: 238-238 Objective: (4.9) Find Continuous Extension 112 B ID:TCALC11W48.5-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 113 C ID:TCALC11W48.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115 A D:TCALC11W48.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 116 A D:TCALC11W48.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 116 A D:TCALC11W45.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac < 0, then y" has exactly one real root and y has a single inflection point. If 36b² - 96ac < 0, then y" has two real roots and y has a single inflection point. If 76b² - 96ac < 0, then y" has exactly one real root and y has a single inflection point. ID TCALCILW 44.7-3 Objective (4.0 + Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. 10) Yes. The point x + 2 is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are real f(x) = 4x² + 4 and g(x) = x² + 1. 10) TCALCILW 44.7-1 11) Diff G Page Ref: 28-275 12) Objective: (40 + Know Concepts: Concavity and Curve Sketching 13) TCALCILW 44.5-4 14) Diff G Page Ref: 28-275 14) Diff G Page Ref: 28-275 15) Objective: (40 + Know Concepts: Concavity and Curve Sketching 16) TCALCILW 44.5-1 17) Diff G Page Ref: 28-275 18) Dir CALCILW 44.5-1 19) Dir CALCILW 44.5-1 10) TCALCILW 44.5-1 11) Dir CALCILW 44.5-1 12) Dir CALCILW 44.5-1 13) Dir CALCILW 44.5-1 14) Dir Page Ref: 28-315 15) Objective: (48) Multi-Part Questions: Applications of Derivatives 16) C 16) Dir CALCILW 44.5-1 17) Dir G Page Ref: 28-315 18) Dir CALCILW 44.5-1 19) Dir CALCILW 44.5-1 11) Dir CALCILW 44.	Answer Key Testname: 155CH4 109) C ID: TCALCIIW 4.8.1-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110) C ID: TCALCIIW 4.4.1-1 Diff: 0 Page Ref: 368-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 111) C ID: TCALCIIW 4.6.4-2 Diff: 0 Page Ref: 328-288 Objective: (4.6) Find Continuous Extension 112) B ID: TCALCIIW 4.8.7-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Appe: Particle Kinematics I 113) C ID: TCALCIIW 4.8.5-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115) A ID: TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 115) A ID: TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 116) A ID: TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Antiderivative 116) A ID: TCALCIIW 4.8.1-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Antiderivative
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. 1136b² - 96ac < 0, then y" has no real roots and y has no inflection points. 1136b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 30b² - 96ac < 0, then y" has two real roots and y has exactly two inflection point. Dir TCALC11W 447-5 Objective (44) +Know Concepts: Concevity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are real f(x) = 4x² + 4 and g(x) = x² + 1. Dif 0 Page Ref: 28=275 Objective: (44) + Know Concepts: Concevity and Curve Sketching 101) Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. Dif 0 Page Ref: 28=275 Objective: (44) - Know Concepts: Libpital's Rule 102) D D: TCALC11W 445-4 Diff 0 Page Ref: 28=287 Objective: (45) - Know Concepts: Libpital's Rule 103) B D: TCALC11W 445-4 Diff 0 Page Ref: 28=287 Objective: (45) - Know Concepts: Libpital's Rule 104) C D: TCALC11W 455-1 Diff 0 Page Ref: 28=315 Objective: (45) - Know Concepts: Applications of Derivatives 105 C D: TCALC11W 445-1 Diff 0 Page Ref: 28=315 Objective: (45) - Know Concepts: Antiderivatives 106 C D: TCALC11W 442-4 Diff 0 Page Ref: 28=315 Objective: (45) - Know Concepts: Antiderivatives 107 C D: TCALC11W 442-4 Diff 0 Page Ref: 28=275 Objective: (45) - Know Concepts: Antiderivatives 106 C D: TCALC11W 442-4 Diff 0 Page Ref: 28=275 Objective: (45) - Know Concepts: Antiderivatives 107 C 10	Answer Key Testname: 155CH4 109 C D: TCALCHW 48.1-1 Diff. 0 Page Ref. 308-315 Objective: (4.8) Find Antiderivative 110 C D: TCALCHW 44.1-1 Diff. 0 Page Ref. 238-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 11 C D: TCALCHW 4.6.4-2 Diff. 0 Page Ref. 238-288 Objective: (4.6) Find Continuous Extension 112 B D: TCALCHW 4.8.7-4 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Appe: Particle Kinematics I 113 C D: TCALCHW 4.8.7-3 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Initial Value Problem 115 A D: TCALCHW 4.8.7-10 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Initial Value Problem 115 A D: TCALCHW 4.8.7-10 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Initial Value Problem 116 A D: TCALCHW 4.8.1-8 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Initial Value Problem 116 A D: TCALCHW 4.8.1-1 Diff. 0 Page Ref. 308-315 Objective: (4.8) Solve Initial Value Problem 116 A D: TCALCHW 4.5.1-1 Diff. 0 Page Ref. 308-315 Objective: (4.5) Solve Appe: Geometry 117 A D: TCALCHW 4.5.1-2 Diff. 0 Page Ref. 308-315 Objective: (4.5) Solve Appe: Geometry 117 A D: TCALCHW 4.5.1-2 Diff. 0 Page Ref. 239-236
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6bx + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac = 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac = 0, then y" has two real roots and y has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac = 0, then y" has two real roots and y has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac = 0, then y" has two real roots and y has exactly two inflection point. Di TCALCIIW 44a-75 Objective (4.4) -Know Concepts: Concavity and Curve Sketching 100) Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there: after is a local minimum at x = c. Diff 0 Page Ref: 288-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 101) Two such functions are f(x) = 4x² 4 and g(x) = x² + 1. Diff 0 Page Ref: 283-286 Objective: (4.6) -Know Concepts: Concavity and Curve Sketching 102 D DTCALCIIW 44a-4 Diff 0 Page Ref: 283-286 Objective: (4.6) -Know Concepts: Applications of Derivatives 103 B D: TCALCIIW 44a-4 Diff 0 Page Ref: 283-286 Objective: (4.8) -Know Concepts: Applications of Derivatives 104 D D: TCALCIIW 44a-4 Diff 0 Page Ref: 283-287 Objective: (4.8) -Know Concepts: Applications of Derivatives 105 C D: TCALCIIW 44a-4 Diff 0 Page Ref: 283-287 Objective: (4.8) -Know Concepts: Antiderivatives 105 C D: TCALCIIW 44a-4 Diff 0 Page Ref: 283-287 Objective: (4.8) -Know Concepts: Antiderivatives 104 C D: TCALCIIW 44a-4 Diff 0 Page	Answer Key Testname: 155CH4 109 C 107 CLACHW481-1 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110 C 110 C 117 CALCHW441-1 Diff 0 Page Ref: 28-275 Objective: (4.4) Identity Inflection Points and Local Extrema Given Graph 111 C 112 D 113 C 113 C 115 C 119 D 117 CALCHW487-4 Diff 0 Page Ref: 29-298 Objective: (4.8) Solve Apps: Particle Kinematics 1 119 C 117 CALCHW487-4 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 119 C 110 TCALCHW487-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics 1 119 C 110 TCALCHW485-10 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 117 A 117 CALCHW481-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Geometry 118 D
Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, $y'' = 12ax^2 + 6bx + 2c$, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b ² - 96ac = 0, then y'' has no real roots and y has no inflection points. If 36b ² - 96ac = 0, then y'' has exactly one real root and y has a single inflection point. Finally, if 36b ² - 96ac > 0, then y'' has two real roots and y has exactly one real root and y has a single inflection point. Finally, if 36b ² - 96ac > 0, then y'' has two real roots and y has exactly one roal root and y has a single inflection point. ID: TCALCIIW 44a-75 Diff 6: Tage Ref 258-275 Objective (4.4) -Know Concepts: Concavity and Curve Sketching 10) Yes. The point x = c is there a local maximum, a local minimum, or an inflection point. But, since $f''(x) > 0$ for all x in the domain, there: e there is a local minimum at x = c. ID: TCALCIIW 44a-74 Diff 6: Page Ref: 258-275 Objective: (4.4) -Know Concepts: Concavity and Curve Sketching 10) Two such functions are $f(x) = 4x^2 + 4$ and $g(x) = x^2 + 1$. ID: TCALCIIW 44a-4 Diff 0: Page Ref: 258-275 Objective: (4.3) -Know Concepts: Hopital's Rule 102) D ID: TCALCIIW 44a-4 Diff 0: Page Ref: 258-286 Objective: (4.3) Multi-Part Quastions: Applications of Derivatives 10) G ID: TCALCIIW 44a-4 Diff 0: Page Ref: 258-255 Objective: (4.3) Multi-Part Quastions: Applications of Derivatives 10) C ID: TCALCIIW 44a-14 Diff 0: Page Ref: 258-255 Objective: (4.3) Multi-Part Quastions: Applications of Derivatives 10) C ID: TCALCIIW 44a-14 Diff 0: Page Ref: 258-257 Objective: (4.3) Schow Concepts: Antiderivatives 10) C ID: TCALCIIW 44a-15 Diff 0: Page Ref: 258-257 Objective: (4.3) Schow Concepts: Antiderivatives 10) C ID: TCALCIIW 44a-18 Diff 0: Page Ref: 258-257 Objective: (4.4) Schow Concepts: Antideto Find Limit 1 107 B Diff 0: Page Ref: 258-257 Objective: (4.4) Schow Concepts: Refeate of Find Limit 1 107 B	Answer Key Testname: 155CH4 109 C 10: TCALCHW 4.81-1 Diff 0 Page Ref: 308-315 Objective: (4.9) Find Antiderivative 110 C 111 C 112 D 113 C 114 D 115 TCALCHW 4.84-1 Diff 0 Page Ref: 208-275 Objective: (4.9) Find Continuous Extension 112 B 115 TCALCHW 4.84-2 Diff 0 Page Ref: 208-315 Objective: (4.8) Find Continuous Extension 113 C 115 C 116 D 117 TCALCHW 4.85-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps Particle Kinematics 1 118 C 119 C 110 TCALCHW 4.85-30 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps Charlied Kinematics 1 119 C 110 TCALCHW 4.85-40 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 119 A 110 TCALCHW 4.81-4 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 110 A 111 CTALCHW 4.81-1 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 113 A 115 TCALCHW 4.81-2 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 116 A 117 CALCHW 4.81-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 118 A 119 D 110 TCALCHW 4.81-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 119 A 110 TCALCHW 4.81-4 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 119 D 110 TCALCHW 4.81-3 Diff 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 119 D 110 TCALCHW 4.84-3 Diff 0 Page Ref: 308-315 Diff 0 Page Ref: 308-325 Diff 0 Page Ref: 308-325 Diff 0 Page Ref: 308-325 D D D D D D D D D D D D D
 Answer Key Testname: 159CH4 99) The curve on have 0 or 2 inflection points. The second derivative is quadratic, y" = 12ax² + 6x + 2c, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36b² - 96ac > 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCHW 44.2-4 100) Yes. The point x = is either a local maximum, a local minimum, or an inflection point. But, since t"(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. 101) Yes. The point x = is either a local minimum at x = c. 102. TCALCHW 44.2-4 103. Of Page Ref: 282-275 104. Of the Page Ref: 282-275 105. Objective: (4.0) How Comprets Conceptivity and Curve Sketching 101) Two such functions are (tx) = 4x² 4 and g(x) = x² + 1. 105. TCALCHW 44.5-4 106. Dig Page Ref: 282-275 107. Objective: (4.0) Hour Comprets Conceptivity and Curve Sketching 108. Discrete (4.0) Hour Comprets Conceptive and the curve sketching 109. Discrete (4.0) Hour Concepts Lifepital Rule 101 101. Two such functions are (tx) = 4x² 4 and g(x) = x² + 1. 102. TCALCHW 44.5-4 103. Discrete (4.0) Hour Concepts Antiderivatives 104. Converts (4.0) Hour Concepts Antiderivatives 105. TCALCHW 44.5-4 106. Tope Ref: 283-215 107. Objective: (4.0) Multi-Part Questions: Applications of Derivatives 108. Converts (4.0) Hour Concepts Antiderivatives 109. Die TCALCHW 44.5-4 109. Trans Ref: 283-283 109. Trans Ref: 283-283 109. Trans Ref: 283-283 109. Trans Ref: 283-283 109. Tran	Answer Key Testname: 155CH4 109 C DTCALCIIW 4.8.1-1 Dif 0 Page Ref: 38-315 Objective: (4.9) Identify Inflection Points and Local Extrema Given Graph 110 C DTCALCIIW 4.4.1-1 Dif: 0 Page Ref: 28-275 Objective: (4.9) Identify Inflection Points and Local Extrema Given Graph 111 C DTCALCIIW 4.6.4-2 Dif: 0 Page Ref: 28-325 Objective: (4.8) Find Continuous Extension 112 B DTCALCIIW 4.8.7-4 Dif: 0 Page Ref: 38-315 Objective: (4.8) Foxow Concepts: Antiderivatives 113 C DTCALCIIW 4.8.7-3 Dif: 0 Page Ref: 38-315 Objective: (4.8) Stove Initial Value Problem 115 A DTCALCIIW 4.8.1-5 Dif: 0 Page Ref: 38-315 Objective: (4.8) Stove Initial Value Problem 117 A DTCALCIIW 4.8.1-5 Dif: 0 Page Ref: 38-315 Objective: (4.8) Stove Appes Contenty 117 A DTCALCIIW 4.5.1-2 Dif: 0 Page Ref: 38-32 Objective: (4.5) Stove Appes Contenty 118 D DTCALCIIW 4.6.1-3 Dif: 0 Page Ref: 328-328 Objective: (4.5) Stove Appes Contenty 118 D DTCALCIIW 4.6.1-3 Dif: 0 Page Ref: 328-328 Objective: (4.6) Stove Appes Contenty 118 D DTCALCIIW 4.6.1-3 Dif: 0 Page Ref: 328-328 Objective: (4.6) Stove Appes Contenty 118 D DTCALCIIW 4.6.1-3 Dif: 0 Page Ref: 328-328 Objective: (4.6) Stove Appes Contenty 119 B
 Answer Key Testname: 15CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y⁴ = 12ax² + 6x + 2z, and quadratics may have 0, 1, or 2 roots, depending on the value of the discriminant. If 36b² - 96ac < 0, then y⁴ has no real roots and y has no inflection points. If 36b² - 96ac = 0, then y⁴ has exactly one real root and y has single inflection point. Finally, if 36b² - 96ac > 0, then y⁴ has two real roots and y has exactly two inflection points. ID: TCALCHIW 443-7 100 Yes. The point x= c is either a local maximum, a local minimum, or an inflection point. But, since f⁴(x) > 0 for all x in the domain, there are no inflection points and the curve is everywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCHIW 443-1 101 Yes ouch functions are (x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCHIW 443-4 102 Diff 0 Page Ref: 283-286 Objective: (4.9) Know Concepts: Unequility and Curve Sketching 103 Trou such functions are (x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCHIW 443-4 104 Diff 0 Page Ref: 283-286 Objective: (4.9) Know Concepts: Unequility and Curve Sketching 105 Trout functions are (x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCHIW 443-4 107 Diff 0 Page Ref: 283-286 Objective: (4.9) Multi-Part Questions: Applications of Derivatives 102 Diff 0 Page Ref: 283-275 Objective: (4.9) Know Concepts: Applications of Derivatives 103 Creater (4.9) Multi-Part Questions: Applications of Derivatives 104 Diff 0 Page Ref: 283-275 Objective: (4.9) Schow Concepts: Applications of Derivatives 105 Creater (4.9) Schow Concepts: Applications of Derivatives 106 Diff 0 Page Ref: 283-286 Objective: (4.9) Schow Concepts: Applications of Derivatives 107 Diff 0 Page Ref: 283-286 Objective: (4.9) Schow Concepts: Applications 108 Diff 0	Answer Key Testname: 155CH4 109 C ID: TCACCIIW 4.8.1-1 Diff: 0 Page Ref: 38-315 Objective: (4.9) Find Anidorivative 110 C ID: TCACCIIW 4.4.1-1 Diff: 0 Page Ref: 38-325 Objective: (4.9) Identify Inflection Points and Local Extrema Given Graph 111 C ID: TCACCIIW 4.8.7-4 Diff: 0 Page Ref: 328-325 Objective: (4.9) Find Continuous Extension 121 B ID: TCACCIIW 4.8.7-4 Diff: 0 Page Ref: 328-315 Objective: (4.8) Solve Apps Particle Kinematics I 131 C ID: TCACCIIW 4.8.7-3 Diff: 0 Page Ref: 328-315 Objective: (4.8) Solve Apps Particle Kinematics I 132 C ID: TCACCIIW 4.8.7-3 Diff: 0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 133 A ID: TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 134 A ID: TCALCIIW 4.8.1-8 Diff: 0 Page Ref: 328-315 Objective: (4.8) Solve Apps Contentry 135 A ID: TCALCIIW 4.5.1-1 Diff: 0 Page Ref: 328-315 Objective: (4.6) Solve Apps Contentry 136 A ID: TCALCIIW 4.5.1-2 Diff: 0 Page Ref: 328-328 Objective: (4.6) Find Antiderivative 137 A ID: TCALCIIW 4.6.1-3 Diff: 0 Page Ref: 328-328 Objective: (4.6) Find Continuous Extension 138 D ID: TCALCIIW 4.6.1-3 Diff: 0 Page Ref: 228-275 Diff: 0 Page Ref: 228-275
 Answer Key Testname: 155CH4 99) The curve can have 0 or 2 inflection points. The second derivative is quadratic, y" = 12xx² + 6xx + 2c, and quadratics may have 0, 1 or 2 cools, depending on the value of the discriminant. If 36k² - 96ac < 0, then y" has no real roots and y has no inflection points. If 36k² - 96ac = 0, then y" has exactly one real root and y has a single inflection point. Finally, if 36k² - 96ac < 0, then y" has two real roots and y has exactly two inflection points. ID: TCALCIT V4.42-7 100 Yes. The point x = c is either a local maximum, a local minimum, or an inflection point. But, since f"(x) > 0 for all x in the domain, there are no inflection points and the curve is verywhere concave up and thus cannot have a local maximum. Hence, there is a local minimum at x = c. ID: TCALCIT V4.64-7 101 Diff 0 Page Ref: 28-275 Objective (4.0 - Know Concepts Concavity and Curve Sketching 101) Two such functions are f(x) = 4x² + 4 and g(x) = x² + 1. ID: TCALCIT V4.64-1 102 Diff: 0 Page Ref: 28-257 103 Objective (4.0 - Know Concepts I: Concavity and Curve Sketching 104 Diff: 0 Page Ref: 28-257 105 Objective (4.0 - Know Concepts I: Concavity and Curve Sketching 105 Diff: 0 Page Ref: 28-257 106 Objective: (4.0 - Know Concepts I: Concavity and Curve Sketching 107 Diff: 0 Page Ref: 28-267 108 Diff: 0 Page Ref: 28-267 109 Diff: 0 Page Ref: 28-267 109 Diff: 0 Page Ref: 28-267 100 Objective: (4.0 - Know Concepts I: Chaptial's Rule 101 Diff: 0 Page Ref: 28-267 103 Objective: (4.0 - Know Concepts Anglications of Derivatives 104 Diff: 0 Page Ref: 28-267 105 Objective: (4.0 - Sket Anglications of Derivatives 106 C 107 CTALCIT V4.61-18 107 Diff: 0 Page Ref: 28-278 108 Objective: (4.0 - Sket Anglications Science The IIII 107 108 Diff: 0 Page Ref: 28-278 109 Objective: (4.0	Answer Key Testname: 155CH4 109 C ID: TCALCHW 4.8.1-1 Dife 0 Page Ref: 308-315 Objective: (4.9) Individual Antiderivative 110 C ID: TCALCHW 4.4.1-1 Dife 0 Page Ref: 208-275 Objective: (4.9) Individual Extension 111 C ID: TCALCHW 4.8.7-4 Dife 0 Page Ref: 208-208 Objective: (4.9) Find Continuous Extension 120 B ID: TCALCHW 4.8.7-4 Dife 0 Page Ref: 308-315 Objective: (4.9) Solve Appe: Particle Kinematics I 131 C ID: TCALCHW 4.8.7-4 Dife 0 Page Ref: 308-315 Objective: (4.9) Solve Initial Value Problem 141 O ID: TCALCHW 4.8.1-4 Dife 0 Page Ref: 308-315 Objective: (4.9) Solve Initial Value Problem 151 A 151 C 151 CALCHW 4.8.1-4 Dife 0 Page Ref: 308-315 Objective: (4.9) Find Antiderivative 116 A 117 CALCHW 4.8.1-4 Dife 0 Page Ref: 308-315 Objective: (4.9) Find Antiderivative 118 D 118 D 119 D 117 CALCHW 4.8.1-2 Dife 0 Page Ref: 209-206 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 B 117 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Find Continuous Extension 119 CALCHW 4.1-4 Dife 0 Page Ref: 209-208 Objective: (4.9) Identify Indifection Points and Local Extense Given Graph

Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
 120) D. ID. TCALCHW 4.7.1-4 Diff: 0 Page Ref: 300-306 Objective: (4.7) Use Newton's Method I 121) C. ID. TCALCHW 4.42-5 Diff: 0 Page Ref: 268-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 122) B. ID. TCALCHW 4.25-6 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find All Functions with Indicated Derivative 123) A. ID. TCALCHW 4.6.1-3 Diff: 0 Page Ref: 253-298 Objective: (4.5) Use L'Hopital's Rule to Find Limit I 124 C. ID. TCALCHW 4.5.3-4 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Physical Applications 125 C. ID. TCALCHW 4.5.3-4 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 126 C. ID. TCALCHW 4.5.3-4 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 126 C. ID. TCALCHW 4.5.3-4 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 126 C. ID. TCALCHW 4.5.3-4 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 127 A. ID. TCALCHW 4.19-3 Diff: 0 Page Ref: 275-283 	 131) C ID: TCALCIIW 4.1.4-4 Dif: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 132 A ID: TCALCIIW 4.3.2-2 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Determine Monotonic Intervals 133 A ID: TCALCIIW 4.12-9 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extremum from Graph 134 A ID: TCALCIIW 4.8.3-9 Diff: 0 Page Ref: 308-315 Objective: (4.3) Check Antiderivative Formula (Y/N) 135 D ID: TCALCIIW 4.3.6-2 Diff: 0 Page Ref: 508-315 Objective: (4.3) Check Antiderivative Formula (Y/N) 135 D ID: TCALCIIW 4.5.4-2 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Location of Extreme Values on Half-Open Interval 136 C ID: TCALCIIW 4.5.1-4 Diff: 0 Page Ref: 253-265 Objective: (4.5) Solve Apps: Geometry 137 C C ID: TCALCIIW 4.5.3-3 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Location of Local Extrema 138 B ID: TCALCIIW 4.2.5-2 Diff: 0 Page Ref: 263-267
 Diff: 0 Fage Ref: 245-253 Objective: (4.1) Tech: Graph and Find Extrema of Absolute Value Function 128) A D: TCALC11W 4.12-7 Diff: 0 Fage Ref: 245-253 Objective: (4.1) Find Absolute Extremum from Graph 129) D D: TCALC11W 4.15-6 Diff: 0 Fage Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema 130) A D: TCALC11W 4.83-3 Diff: 0 Fage Ref: 308-315 Objective: (4.8) Check Antiderivative Formula (Y/N) 	 Diff: 0 Page Ref: 259-261 Objective: (4.2) Find All Functions with Indicated Derivative 139) B D: TCALC11W 4.8.1-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 140) B D: TCALC11W 4.8.8-2 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 141) A ID: TCALC11W 4.3.1-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Find Critical Points
125	126
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
 142 A D: TCALCI W 43.4-10 Diff: 0 Page Ref: 263-267 Objective: (A) Shorth Graph: Identify Extrema, Inflection Points 143 B D: TCALCI W 44.2-2 Diff: 0 Page Ref: 263-275 Objective: (A) Shorth Graph: Identify Extrema, Inflection Points 144 B D: TCALCI W 44.7-4 Diff: 0 Page Ref: 243-233 Objective: (A) Shorth Graph: Identify Extreme Values 145 C D: TCALCI W 48.10-2 Diff: 0 Page Ref: 243-233 Objective: (A) Shorth Problem 146 B D: TCALCI W 48.10-2 Diff: 0 Page Ref: 243-233 Objective: (A) Shorth Page Ref: 243-233 Objective: (A) Find: Configure Values 147 C Diff: 0 Page Ref: 203-288 Objective: (A) Float Confirmous Extension 148 B D: TCALCI W 46.4-4 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 149 B D: TCALCI W 45.7-2 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 149 B D: TCALCI W 45.7-3 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 150 C D: TCALCI W 45.2-5 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 151 D D: TCALCI W 45.2-5 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 152 C D: TCALCI W 45.2-5 Diff: 0 Page Ref: 203-288 Objective: (A) Solve Apps: Particle Kinematics I 153 D D: TCALCI W 45.2-5 Diff: 0 Page Ref: 203-288 Objective: (A) Use I: Hoptal's Nule to Find Limit I D: TCALCI W 46.1-5 Diff: 0 Page Ref: 423-233 Objective: (A) Use Compa: Extreme Values <	 153) A D: TCALCI IW 425-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find All Functions with Indicated Derivative 154) D D: TCALCI W 4.3.4-4 Diff: 0 Page Ref: 256-267 Objective: (4.3) Find Monotonic Intervals of f(x) 155) A D: TCALCI W 4.22-1 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 156) B D: TCALCI W 4.82-8 Diff: 0 Page Ref: 263-267 Objective: (4.3) End Monotonic Intervals 157 C D: TCALCI W 4.82-8 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 158) B D: TCALCI W 4.15-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 159 D D: TCALCI W 4.16-4 Diff: 0 Page Ref: 245-253 Objective: (4.6) Find Continuous Extension 160 B D: TCALCI W 4.25-7 Diff: 0 Page Ref: 255-261 Objective: (4.3) Find All Cuntinuous Extension 161 B D: TCALCI W 4.25-7 Diff: 0 Page Ref: 255-261 Objective: (4.1) Find All Sunctions with Indicated Derivative 161 B D: TCALCI W 4.25-7 Diff: 0 Page Ref: 256-261 Objective: (4.1) Use Newton's Method I 162 A D: TCALCI W 4.15-10 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema 163 C D: TCALCI W 4.15-10 Diff: 0 Page Ref: 245-253 Objective: (4.3) Find Location of Extrema

Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
 1c4) C DT CALCIIW 47.1-6 Diff: 0 Page Ref: 300-306 Objective: (47) Use Newton's Method I 1c5 B DI CALCIIW 47.1-3 Diff: 0 Page Ref: 300-306 Objective: (47) Use Newton's Method I 1c6 C DI TCALCIIW 44.2-3 Diff: 0 Page Ref: 288-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 1c7 A DI TCALCIIW 41.5-2 Diff: 0 Page Ref: 285-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 1c8 A DI TCALCIIW 41.5-2 Diff: 0 Page Ref: 285-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 1c9 A DI TCALCIIW 42.5-8 Diff: 0 Page Ref: 285-281 Objective: (4.2) Find Alluse and Locations of Extrema 1c9 D DI TCALCIIW 42.5-8 Diff: 0 Page Ref: 285-281 Objective: (4.2) Find All Functions with Indicated Derivative 17 D DI TCALCIIW 44.5-10 Diff: 0 Page Ref: 295-288 Objective: (4.8) Find Antiderivative 17 D DI TCALCIIW 46.5-2 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) 17 D DI TCALCIIW 46.5-5 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) 17 D DI TCALCIIW 46.5-5 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) 	 175) C. DT CALCHW 4.82-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Indefinite Integral 176) A. DT CALCHW 4.83-1 Diff: 0 Page Ref: 308-315 Objective: (4.9) Check Antiderivative Formula (Y/N) 177) D. DT CALCHW 4.81-5 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 178) D. DT CALCHW 4.82-5 Diff: 0 Page Ref: 308-315 Objective: (4.9) Solve Initial Value Problem 179) A. DT CALCHW 4.27-8 Diff: 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 180) B. DT CALCHW 4.22-2 Diff: 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 181) A. DT CALCHW 4.14-10 Diff: 0 Page Ref: 236-253 Objective: (4.1) Find Absolute Extrema on Interval 182) B. DT CALCHW 4.14-4 Diff: 0 Page Ref: 235-233 Objective: (4.1) Find Absolute Extrema on Interval 183) C. DT CALCHW 4.1.1-2 Diff: 0 Page Ref: 235-235 Objective: (4.1) Find Critical Points and Local Extreme Values 183) C. DT CALCHW 4.1.1-2 Diff: 0 Page Ref: 235-253 Objective: (4.1) Hind Critical Points and Local Extreme Given Graph 184) D. DT CALCHW 4.4.1-2 Diff: 0 Page Ref: 235-257 Objective: (4.1) Grad Monotonic Intervals of f(x) 185) A. DT TCALCHW 4.22-4 Diff: 0 Page Ref: 235-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem
129	130
Testname: 155CH4	Testname: 155CH4
 186 B ID: TCALCI IW 44.64-5 Digitive (4.6) Find Continuous Extension 187 D ID: TCALCI W 43.3-3 Diff: 0 Page Ref: 203-287 Objective: (4.8) Mayles (fQ Silven f(V): Locate Relative Extrema 188 B ID: TCALCI W 48.5-1 Diff: 0 Page Ref: 208-315 Objective: (4.8) Solve Initial Value Problem 199 D ID: TCALCI W 46.2-5 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 190 D ID: TCALCI W 46.2-6 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 191 C ID: TCALCI W 42.5-5 Diff: 0 Page Ref: 293-298 Objective: (4.2) Find All Functions with Indicated Derivative Objective: (4.2) Find All Functions with Indicated Derivative Objective: (4.2) Find All Functions with Indicated Derivative Objective: (4.2) Find All Function Given Derivative and Point 193 S ID: TCALCI W 42.5-7 Diff: 0 Page Ref: 295-261 Objective: (4.8) Solve Apper Particle Kinematics I 194 C ID: TCALCI W 48.5-7 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apper Particle Kinematics I 195 D: TCALCI W 48.5-7 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apper Particle Kinematics I 196 C ID: TCALCI W 43.5-6 	 197 C ID: TCALCITW 425-4 Diff: 0 Page Ref: 256-261 Objective: (42) Find All Functions with Indicated Derivative 198 D ID: TCALCITW 4.3.3-4 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 199 C ID: TCALCITW 4.8.7-6 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 200 D ID: TCALCITW 4.4.2-6 Diff: 0 Page Ref: 208-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 201 A ID: TCALCITW 4.4.2-6 Diff: 0 Page Ref: 235-233 Objective: (4.1) Find Absolute Extremum from Graph 202 B ID: TCALCITW 4.6.1-1 Diff: 0 Page Ref: 235-238 Objective: (4.0) Use L'Hopital's Rule to Find Limit I 203 B ID: TCALCITW 4.1.4-9 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 204 C ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 203 A ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 205 A ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema from Graph 205 A ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 205 A ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema from Graph 206 B ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-257 Objective: (4.1) Find Absolute Extrema from Graph 206 B ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-257 Objective: (4.1) Find Absolute Extrema from Graph 206 J ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-257 Objective: (4.1) Find Absolute Extrema from Graph 206 J ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-257 Objective: (4.1) Find Absolute Extrema from Graph 207 A ID: TCALCITW 4.1.4-5 Diff: 0 Page Ref: 245-257 Objective: (4.1) Find Absolute Extrema from Graph

Answer Kev	Answer Key
Testname: 155CH4	Testname: 155CH4
 208) B ID: TCALC11W 4.3.3-6 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 209) A ID: TCALC11W 4.1.7-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values 	 219) D ID: TCALC11W 4.4.2-1 Diff: 0 Page Ref: 268-275 Objective: (4.4) Sketch Graph, Identify Extrema, Inflection Points 220) D ID: TCALC11W 4.1.5-4 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema
 210 A D: TCALCIIW 4.8.1-2 Diff: 0 Page Ref: 238-315 Objective: (4.8) Find Antiderivative 211 B D: TCALCIIW 4.2.5-10 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find All Functions with Indicated Derivative 212 D D: TCALCIIW 4.5.3-1 Diff: 0 Page Ref: 239-286 Objective: (4.5) Solve Apps: Business and Economics 213 B D: TCALCIIW 4.8.5-8 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 214 B D: TCALCIIW 4.8.2-9 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 215 O Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Indefinite Integral 216 A D: TCALCIIW 4.5.1-7 Diff: 0 Page Ref: 239-286 Objective: (4.5) Solve Apps: Geometry 216 A D: TCALCIIW 4.8.8-5 Objective: (4.5) Solve Apps: Geometry 217 D: D: TCALCIIW 4.8.8-5 Objective: (4.9) Solve Apps: Particle Kinematics II 218 A D: TCALCIIW 4.6.3-6 Diff: 0 Page Ref: 233-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) 	 21) D. D: TCALCHW 4.1.7-6 Diff: 0 Page Ref: 245-233 Objective: (4.1) Solve Apps: Extreme Values 22) B D: TCALCHW 4.2.5-1 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find All Functions with Indicated Derivative 23) C D: TCALCHW 4.6.3-7 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) 24) C D: TCALCHW 4.5.1-8 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Geometry 225) C D: TCALCHW 4.3.3-3 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (fx) Given f(x): Locate Relative Extrema 26) D D: TCALCHW 4.8.7-5 Diff: 0 Page Ref: 256-261 Objective: (4.8) Solve Apps: Particle Kinematics I 227 A D: TCALCHW 4.8.3-6 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 28) A D: TCALCHW 4.8.3-6 Diff: 0 Page Ref: 256-261 Objective: (4.8) Check Antiderivative Formula (Y/N) 29) A D: TCALCHW 4.2.3-1 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find and Plot Roots of Polynomial Function and Its First Derivative
Answer Key Testrame: 155CH4	134 Answer Key Technomy, 155CH4
230) C ID:TCALCIIW 4.1.2-6 Dift 0. Page 866 245-253	
 Objective (14) Find Absolute Extremum from Graph 21) B Diff. 0 Page Ref: 308-315 Objective (48) Solve Initial Value Problem 22) C D: TCALCHIW 4.2.7-9 Diff. 0 Page Ref: 255-261 Objective: (4.8) Solve Apps: Particle Kinematics 23) A D: TCALCHIW 4.8.7-3 Diff. 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 24) B D: TCALCHIW 4.2.6-1 Diff. 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 253 A D: TCALCHIW 4.2.7-2 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 260 D D: TCALCHIW 4.2.7-2 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 270 A D: TCALCHIW 4.2.7-2 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 281 D D: TCALCHIW 4.2.7-4 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 283 D D: TCALCHIW 4.2.7-4 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 293 D D: TCALCHIW 4.2.7-4 Diff. 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics 293 D D: TCALCHIW 4.2.7-4 Diff. 0 Page Ref: 256-261 Objective: (4.3) Solve Apps: Particle Kinematics 293 D D: TCALCHIW 4.5.7-6 Diff. 0 Page Ref: 257-286 Objective: (4.3) Solve Apps: Particle Kinematics 293 D D: TCALCHIW 4.5.7-6 Diff. 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Physical Applications 	 241) C ID: TCALCTIW 4.1.4-8 Diff: 0 Page Ref: 252-233 Objective: (4.1) Find Absolute Extrema on Interval 242) D ID: TCALCTIW 4.5.3-3 Diff: 0 Page Ref: 279-286 Objective: (4.3) Solve Appe. Business and Economics 243) C ID: TCALCTIW 4.8.5-2 Diff: 0 Page Ref: 308-315 Objective: (4.3) Solve Initial Value Problem 244) D ID: TCALCTIW 4.1.5-1 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema 245 D ID: TCALCTIW 4.4.1-3 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 246 B ID: TCALCTIW 4.6.3-8 Diff: 0 Page Ref: 268-275 Objective: (4.4) Identify Inflection Points and Local Extrema Given Graph 246 D ID: TCALCTIW 4.6.3-8 Diff: 0 Page Ref: 245-233 Objective: (4.4) Find Limit (L'Hopital's Rule not Applicable) 247 D ID: TCALCTIW 4.1.6-6 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Critical Points and Local Extreme Values 248 A ID: TCALCTIW 4.8.10-1 Diff: 0 Page Ref: 268-315 Objective: (4.8) Tech: Solve Initial Value Problem 249 D ID: TCALCTIW 4.8.10-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Location of Extreme Values on Half-Open Interval 250 D ID: TCALCTIW 4.6.1-7 Diff: 0 Page Ref: 263-288 Objective: (4.6) Ext-Hopital's Rule to Find Limit 1

Ansv Testi	wer Key name: 155CH4	An Tes
252)	A ID: TCALC11W 4.2.1-1 Diff 0 Page Ref: 256-261	26
253)	Objective: (4.2) Find c in $f'(c) = (f(b) - f(a))/(b - a)$ D	26
	ID: TCALCHW 4.6.3-1 Diff: 0 Page Ref: 293-298 Objective: (6) Since Limit () 'Honital's Pula not Applicable)	
254)	B ID: TCALCIIW 42.3-2	26
	Diff: 0 Page Ref: 256-261 Objective: (4.2) Find and Plot Roots of Polynomial Function and Its First Derivative	
255)	C ID: TCALC11W 4.8.5-9 Diff: 0 Page Ref. 308-315	26
256)	Objective: (4.8) Solve Initial Value Problem	26
	Dif O Fage Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics	
257)	B ID: TCALCHW 47.1-5	26
	Diff. U rage xet: 300-300 Objective: (4.7) Use Newton's Method I	
258)	D ID: TCALCHW 4.6.1-4 Diff: 0 Page Ref: 293-298	26
259)	Objective: (4.6) Use L'Hopital's Rule to Find Limit I D T T T T T T T T T T T T T T T T T T	27
	1D: ICAACTIW 43.4-1 Diff: 0 Page Ref: 279-286 Objective: (4.5) - K-now Concepts: Extrema/Optimization	
260)	A ID: TCALC11W 4.1.4-2	27
	Diff 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval	
261)	C ID: TCALC11W 4.6.3-3 Diff 0 Page Ref: 293-298	27
	Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable) A	27
2621	ID: TCALC11W 4.8.8-3	2,
	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137	
Ansv	Diff 0 Page Ref 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137	Ar
Ansv Festr	Diff 0 Page Ref 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 wer Key name: 155CH4	Ar Te
Ansv Testi 274)	Diff 0 Page Ref 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 wer Key name: 155CFH4 C ID: TCALCIIW 4.17-1	Ar Te 28
4.nsv Testr 274)	Diff 0 Page Ref 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Wer Key name: 155CH4 C ID:TCALCI1W 4.1.7-1 Diff: 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values	Ar Te 28
Ansv Festr 274) 275)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Wer Key name: 155CH4 C ID: TCALCLIW 41.7-1 Diff: 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values A ID: TCALCLIW 4.6.1-6 DDiff: 0 Page Ref: 293-298	Arn Te: 28 28
Ansv Festi 274) 275) 2276)	Diff 0 Page Ref 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Wer Key name: 155CH4 C C C D: TCALCLIW 4.17-1 Diff 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values A D: TCALCLIW 4.61-6 Diff 0 Page Ref: 235-298 Objective: (4.1) Solve Apps: Extreme Values A D: TCALCLIW 4.61-6 Diff 0 Page Ref: 235-298 Objective: (4.1) Solve Apps: Extreme Values Diff 0 Page Ref: 235-298 Objective: (4.1) Solve Apps: Extreme Values D: TCALCLIW 4.61-6 Diff 0 Page Ref: 235-298 Objective: (4.1) Solve Apps: Extreme Values D: TCALCLIW 4.61-6 Diff 0 Page Ref: 255-298 Objective: (4.1) Solve Apps: Extreme Values D: TCALCLIW 4.61-6 Diff 0 Page Ref: 255-298 Objective: (4.1) Solve Apps: Extreme Values D: TCALCLIW 4.61-6 Diff 0 Page Ref: 255-298 Diff 0 Page Re	Ar Te 28 28 28
Ansv Festr 274) 275) 276)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Ver Key name: 155CH4 C ID: TCALCLIW 41.7-1 Diff: 0 Page Ref: 245-233 Objective: (4.1) Solve Apps: Extreme Values A ID: TCALCLIW 4.6.1-6 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D ID: TCALCLIW 4.15-7 Diff: 0 Page Ref: 245-233 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D ID: TCALCLIW 4.15-7 Diff: 0 Page Ref: 245-233 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D Objective: (4.6) Use L'Hopital's Rule to Find Limit I	Art Te 28 28 28
Ansv Testi 274) 275) 276) 277)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Newer Key name: 155CH4 C C D: TCALCIIW 4.17-1 Diff 0 Page Ref: 235-233 Objective: (4.1) Solve Apps: Extreme Values A D: TCALCIIW 4.6.1-6 Diff 0 Page Ref: 235-288 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.6.1-7 Diff 0 Page Ref: 235-288 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.6.1-7 Diff 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.6.5-7 Diff 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema	Arr Te: 28 28 28 28 28
Ansv Cestr 274) 2775) 2776) 2777)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Ver Key name: 155CH4 C D: TCALCIIW 4.17-1 Diff 0 Page Ref: 245-253 Objective: (4.15 Solve Apps: Externe Values A D: TCALCIIW 4.1-6 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 285-253 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 285-253 Objective: (4.6) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 285-253 Objective: (4.6) Know Concepts: Antiderivatives D	Art Te 28 28 28 28 28
274) 277) 277) 277) 277)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Meer Key name: 155CH4 C D: TCALCIIW 4.17-1 Diff 0 Page Ref: 328-233 Objective: (4.1) Solve Apps: Extreme Values A D: TCALCIIW 4.61-6 Diff 0 Page Ref: 239-298 Objective: (4.1) Isolve Apps: Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff 0 Page Ref: 245-233 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.15-7 Diff 0 Page Ref: 235-238 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.8-9-2 Diff 0 Page Ref: 235-235 Objective: (4.8) K-Kow Concepts: Antiderivatives Diff 0 Page Ref: 235-236 Diff 0 Page Ref: 235-235 Diff 0 Page Ref: 235-235 Diff 0 Page Ref: 235-236 Diff 0 Page Ref: 235-236	Ar Te 28 28 28 28 28 28 28
262) Ansv Festr 274) 275) 277) 277) 277) 277)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Ver Key name: 155CH4 C D: TCALCIIW 4.17-1 Diff 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extense Values A D: TCALCIIW 4.61-6 Diff: 0 Page Ref: 235-258 Objective: (4.0) Use L'Hopital's Rule to Find Limit I D D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 235-253 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.15-7 Diff: 0 Page Ref: 235-253 Objective: (4.1) Find Values and Locations of Extrema C D: TCALCIIW 4.8-9-2 Diff: 0 Page Ref: 308-315 Objective: (4.8) -Know Concepts: Antiderivatives D D: TCALCIIW 4.61-2 Diff: 0 Page Ref: 308-315 Objective: (4.6) Use L'Hopital's Rule to Find Limit I	Ar Te 28 28 28 28 28 28 28 28 28 28 28 28 28
262) Ansv [est] 274) 277) 277) 277) 277) 277)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 26 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 	Ar Te 28 28 28 28 28 28 28 28 28 28 29
Ansv Festr 2774) 2775) 2776) 2777) 2778) 2779) 2800)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137	Ar Te 28 28 28 28 28 28 28 28 29 29 29
Ansv Festr 274) 2775) 2776) 2777) 2778) 2779) 280)	Diff. 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Wer Key name: 155CH4 C DT: CCALCI1W 4.17-1 Diff. 0 Page Ref: 232-233 Objective: (4.1) Solve Apps: Extreme Values A D: CCALCI1W 4.6.1-6 Diff. 0 Page Ref: 232-238 Objective: (4.0) Use L'Hopital's Rule to Find Limit I D: TCALCI1W 4.5-7 Diff. 0 Page Ref: 232-238 Objective: (4.0) Use L'Hopital's Rule to Find Limit I D: TCALCIIW 4.15-7 Diff. 0 Page Ref: 232-238 Objective: (4.0) Sex Oncepts: Antiderivatives Diff. 0 Page Ref: 232-235 Objective: (4.0) Know Concepts: Antiderivatives Diff. 0 Page Ref: 232-286 Objective: (4.0) Sex L'Hopital's Rule to Find Limit I C Iff. 0 Page Ref: 232-287 Objective: (4.0) Use L'Hopital's Rule to Find Limit I C Iff. 0 Page Ref: 232-287 Objective: (4.0) Use L'Hopital's Rule to Find Limit I C Page Ref: 232-287	Ar Te 28 28 28 28 28 28 28 28 28 28 28 28 28
262) Ansv Festi 274) 277) 277) 277) 277) 278) 280) 281)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 127 137 C C D : TCALC11W 4.17-1 Diff: 0 Page Ref: 282-233 Objective: (4.1) Solve Apps: Extreme Values A D : TCALC11W 4.6.1-6 Diff: 0 Page Ref: 292-298 Objective: (4.0) Use L'Hopital's Rule to Find Limit I D : TCALC11W 4.15-7 Diff: 0 Page Ref: 293-298 Objective: (4.0) Find Values and Locations of Extrema C : TCALC11W 4.15-7 Diff: 0 Page Ref: 293-203 Objective: (4.0) Find Values and Locations of Extrema C : TCALC11W 4.15-7 Diff: 0 Page Ref: 293-203 Objective: (4.0) Find Values and Locations of Extrema C : TCALC11W 4.8-2 Diff: 0 Page Ref: 293-205 Objective: (4.0) Use L'Hopital's Rule to Find Limit I C : TCALC11W 4.5-1-2 Diff: 0 Page Ref: 293-267 Objective: (4.0) Use Network Method I C : TCALC11W 4.1-4-1 Diff: 0 Page Ref: 293-267 Objective: (4.7) Use Nework Method I	Ar Te 28 28 28 28 28 28 28 28 28 28 28 28 28
Ansv Festr 2774) 2775) 2776) 2777) 2778) 2779) 2800) 2810) 2810) 2822)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 127	Ar Te 28 28 28 28 28 28 29 29 29 29 29 29 29 29
Arnsv Festr 2774) 2775) 2776) 2777) 2778) 2779) 280) 281) 282)	Diff 0 Page Ref: 383-315 Opjetive: (4.8) Solve Appe Particle Kinematics II 127 Proceedings Proceedings Proceedings Objective: (4.8) Solve Appe Particle Kinematics II Sectors Proceedings Sectors Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Proceedings Procedings Proceedings	Art Te 28 28 28 28 28 28 28 29 29 29 29 29
Ansu [estr 274) 277) 277) 277) 278) 280) 281) 282) 282) 283)	Diff 0 Page Ref. 398-315 Objective: (4.8) Solve Appe: Particle Kinematics II 137 wer Key name: 155CH4 C DTCALCIIW 41.7-1 Diff 0 Page Ref. 235-233 Objective: (13) Solve Appe: Externe Values A Diff 0 Page Ref. 235-283 Objective: (14) Solve Appe: Externe Values A Diff 0 Page Ref. 235-288 Objective: (14) Solve Appe: Externe Values C Diff 0 Page Ref. 235-288 Objective: (14) Solve Appe: Externe Values Diff 0 Page Ref. 235-288 Objective: (14) Solve Appe: Externe Values Diff 0 Page Ref. 235-288 Objective: (14) Solve Appe: Externe Values Diff 0 Page Ref. 235-288 Objective: (14) Kal-4 Diff 0 Page Ref. 235-288 Objective: (14) Kal-2 Diff 0 Page Ref. 235-288 Objective: (14) End Values and Locations of Extrema Diff 0 Page Ref. 235-288 Objective: (14) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-277 Objective: (14) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-277 Objective: (14) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-277 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-277 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective: (15) Find Mandonic Intervals of (tx) Diff 0 Page Ref. 235-287 Objective:	Ann Tee 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Ansv Testr 274) 277) 277) 277) 278) 279) 280) 281) 282) 283)	Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 137 Instruction: Instr	Ann Tet 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29
Ansv Testr 274) 275) 277) 277) 277) 278) 280) 281) 282) 283) 283) 283)	Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Appe: Particle Kinematics II 137	Arr Te: 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29

Answer Key Festname: 155CH4

- 263) C ID: TCALC11W 4.5.1-6 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Geometry
- B
 ID: TCALC11W 4.3.1-2
 Diff: 0 Page Ref: 263–267
 Objective: (4.3) Analyze f(x) Given f(x): Find Critical Points
- (b5)
 C

 ID: TCALC11W 4.1.9-1

 Diff: 0
 Page Ref: 245-253

 Objective: (4.1)
 Tech: Graph and Find Extrema of Absolute Value Function
- 266) A ID: TCALC11W 4.8.2-5 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Indefinite Integral
- 26/7 A ID: TCALC11W 4.1.6-7 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Critical Points and Local Extreme Values
- 268) B ID: TCALC11W 4.1.2-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extremum from Graph
- 269) C ID: TCALCHIW 4.5.2-1 Diff: 0 Page Ref: 279–286 Objective: (4.5) Solve Apps: Physical Applications
- 270
 C

 ID: TCALC11W 4.1.9-2
 Diff: 0

 Page Ref: 245-253
 Objective: (4.1) Tech: Graph and Find Extrema of Absolute Value Function
- 271) A ID: TCALC11W 4.8.5-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem
- 272) B ID: TCALCI1W 4.2.6-2 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point
- 273) D ID: TCALC11W 4.6.3-4 Diff: 0 Page Ref: 293-298 Objective: (4.6) Find Limit (L'Hopital's Rule not Applicable)

138

Answer Key Testname: 155CH4

- 285) D ID: TCALC11W 4.8.8-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II
- 286 D
 ID: TCALC11W 4.5.3-5
 Diff: 0 Page Ref: 279-286
 Objective: (4.5) Solve Apps: Business and Economics
 287) A
- (287) A ID: TCALC11W 4.6.4–4 Diff: 0 Page Ref: 293–298 Objective: (4.6) Find Continuous Extension
- 288) D ID: TCALCI1W 4.3.4-8 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Monotonic Intervals of f(x)
- A ID: TCALC11W 4.5.1-9 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Geometry
- 290) C ID: TCALC11W 4.1.5-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema
- 291) C ID: TCALC11W 4.6.1-9 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule to Find Limit I
- 292) C ID: TCALC11W 4.6.2-3 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II
- 293) C ID: TCALC11W 4.8.7-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I
- 294) D ID: TCALC11W 4.1.5-8 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema
- 295) C ID: TCALC11W 4.8.2-2 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Indefinite Integral

Answer Key	Answer Key
Testname: 155CH4	Testname: 155CH4
296) C DI: TCALCI1W 4.1.6-5	307) A ID: TCALC11W 4.2.7-1
Diff. 0 Page Ref: 245–253	Diff: 0 Page Ref: 256-261
Objective: (4.1) Find Critical Points and Local Extreme Values	Objective: (4.2) Solve Apps: Particle Kinematics
297) A	308) C
ID: TCALCIIW 4.6.4-1 Diff 0. Page Ref. 203-208	ID: TCALC11W 4.8.1-5 Diff 0 Page Ref 308-315
Objective: (4.6) Find Continuous Extension	Objective: (4.8) Find Antiderivative
200) B	200) B
10: TCALC11W 4.5.3-7	ID: TCALC11W 4.8.3-10
Diff: 0 Page Ref: 279-286	Diff: 0 Page Ref: 308-315
Objective: (4.5) Solve Apps: Business and Economics	Objective: (4.8) Check Antiderivative Formula (Y/N)
299) C ID: TCAL CLIW 4 2 7-7	310) B ID: TCALC11W 482-3
Diff: 0 Page Ref: 256-261	Diff: 0 Page Ref: 308-315
Objective: (4.2) Solve Apps: Particle Kinematics	Objective: (4.8) Find Indefinite Integral
300) A	311) C
ID: TCALC11W 4.3.4-9	ID: TCALC11W 4.2.7-6
Diff: 0 Fage Kef: 263–267 Objective: (4.3) Find Monotonic Intervals of f(x)	Diff: 0 Page Ref: 256–261 Objective: (4.2) Solve Apps: Particle Kinematics
	oup D
301) A ID: TCALCI1W 4.8.3-5	312) B ID: TCALC11W 4.5.2-4
Diff: 0 Page Ref: 308-315	Diff: 0 Page Ref: 279-286
Objective: (4.8) Check Antiderivative Formula (Y/N)	Objective: (4.5) Solve Apps: Physical Applications
302) D TCALCUW 414-6	313) A ID: TCALC11W 4 8 1-7
Diff: 0 Page Ref: 245-253	Diff: 0 Page Ref: 308-315
Objective: (4.1) Find Absolute Extrema on Interval	Objective: (4.8) Find Antiderivative
303) C	314) C
ID: TCALC11W 4.8.7-8	ID: TCALC11W 4.8.2-7
Ohr. 0 Fage Ker. 308-317 Objective: (4.8) Solve Apps: Particle Kinematics I	Diff: 0 rage Ket: 308–315 Objective: (4,8) Find Indefinite Integral
20(1) A	215) B
ID: TCALC11W 4.6.2-2	ID: TCALC11W 4.3.3-1
Diff: 0 Page Ref: 293-298	Diff: 0 Page Ref: 263-267
Objective: (4.6) Use L'Hopital's Rule To Find Limit II	Objective: (4.3) Analyze $f(x)$ Given $f'(x)$: Locate Relative Extrema
305) A	316) A
Dif 0 Page Ref: 245-253	Diff: 0 Page Ref: 245-253
Objective: (4.1) Solve Apps: Extreme Values	Objective: (4.1) Find Absolute Extremum from Graph
306) D	317) A
D: ICALCTIV 4.86-2 Diff 0 Page Ref 308-315	D: ICALCHIW 4.6.2-4 Diff 0 Page Ref: 293-298
Objective: (4.8) Find Plane Curve with Given Properties	Objective: (4.6) Use L'Hopital's Rule To Find Limit II
141	142
Answer Key	Answer Key
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
Answer Key Testname: 155CH4 ³¹⁸⁾ C ID: TCALCIIW 426-5	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10
Answer Key Testname: 155CH4 318) C ID: TCALCHW 42.6-5 Diff: 0 Page Ref: 256-261 Diff: 0 Fage Ref: 256-261	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Chientine (16) Chientine March March 10
Answer Key Testname: 155CH4 318) C D: TCALC11W 42.6-5 Diff 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I
Answer Key Testname: 155CH4 318) C ID: TCALCHW 4.2.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALCHW 4.6.2-1	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.87-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.33-7
Answer Key Testname: 155CH4 318) C ID: TCALC11W 4.2.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 4.6.2-1 Diff: 0 Page Ref: 293-298	Answer Key Testname: 155CH4 329) C ID: TCALCTIW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALCTIW 4.3.3-7 Diff: 0 Page Ref: 233-267
Answer Key Testname: 155CH4 318) C ID: TCALCIIW 4.2.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALCIIW 4.6.2-1 Diff: 0 Page Ref: 295-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 363-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema
Answer Key Testname: 155CH4 318) C ID: TCALC11W 4.26-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 331) B
Answer Key Testname: 155CH4 318) C ID: TCALC11W 4.2.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C ID: TCALC11W 4.8.8-4 Diff: 0 Page Ref: 298-315	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 331) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261
Answer Key Testname: 155CH4 318) C Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C D: TCALCI1W 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C D: TCALCI1W 4.8.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II	Answer Key Testname: 155CH4 329) C ID: TCALCHW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given F(x): Locate Relative Extrema 331) B ID: TCALCHW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point
Answer Key Testname: 155CH4 318) C ID: TCALCI1W 4.26-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Civen Derivative and Point 319) C ID: TCALCI1W 4.62-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C ID: TCALCI1W 4.88-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 253-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 331) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 332) D
Answer Key Testname: 155CH4 318) C ID: TCALCHW 4.26-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C ID: TCALCHW 4.6.2-1 Diff: 0 Page Ref: 295-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C ID: TCALCHW 4.8.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A ID: TCALCHW 4.2.2-3	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 331) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 332) D ID: TCALC11W 4.8.1-3
Answer Key Testname: 155CH4 318) C ID: TCALCHW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALCHW 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 200) C ID: TCALCHW 4.8.8-4 Diff: 0 Page Ref: 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 201) A ID: TCALCHW 4.2.2-3 Diff: 0 Page Ref: 208-261 Di: TCALCHW 4.2.2-3 Diff: 0 Page Ref: 258-261 Di: TCALCHW 4.2.2-3	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 31) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.2) Find Function Fine
Answer Key Testname: 155CH4 318) C ID: TCALC11W 4.2.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C ID: TCALC11W 4.8.9-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A ID: TCALC11W 4.2.2-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem	Answer Key Testname: 155CH4 229) C ID: TCALCHW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 31) B ID: TCALCHW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALCHW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative
Answer Key Testname: 155CH4 318) C ID: TCALCI1W 4.26-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALCI1W 4.62-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C ID: TCALCI1W 4.85-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A ID: TCALCI1W 4.22-3 Diff: 0 Page Ref: 256-561 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322) A ID: TCALCI1W 4.85-4	Answer Key Testname: 155CH4 329) C ID: TCALCIIW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALCIIW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (tx) Given f(x): Locate Relative Extrema 331) B ID: TCALCIIW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 320 D ID: TCALCIIW 4.8.1-3 Diff: 0 Page Ref: 258-315 Objective: (4.8) Find Antiderivative 333) D ID: TCALCIIW 4.14-3
Answer Key Testname: 155CH4 318) C ID: TCALC11W 4.26-5 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 4.62-1 Diff: 0 Page Ref: 295-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C ID: TCALC11W 4.88-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A ID: TCALC11W 4.22-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322) A ID: TCALC11W 4.85-4 Diff: 0 Page Ref: 308-315	Answer Key Testname: 155CH4 329) C ID: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330) D ID: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 331) B ID: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322) D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 333) D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 245-233
Answer Key Testname: 155CH4 318 C D: TCALCHW 4.26-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C D: TCALCHW 4.62-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hoptal's Rule To Find Limit II 320 C D: TCALCHW 4.8.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A D: TCALCHW 4.22-3 Diff: 0 Page Ref: 308-315 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A D: TCALCHW 4.8.5-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 333 D ID: TCALC11W 4.14-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval
Answer Key Testname: 155CH4 318) C D: TCALC11W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C D: TCALC11W 46.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C D: TCALC11W 4.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A D: TCALC11W 42.2-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A D: TCALC11W 4.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.4) Solve Initial Value Problem 323 A	Answer Key Testname: 155CH4 329) C ID: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330 D ID: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(k): Locate Relative Extrema 331 B ID: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 332 D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 388-315 Objective: (4.3) Find Antiderivative 333 D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D
Answer Key Testname: 155CH4 318) C ID: TCALCI1W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C ID: TCALCI1W 4.6-2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C ID: TCALCI1W 4.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A ID: TCALCI1W 4.2-3 Diff: 0 Page Ref: 256-361 Objective: (4.8) Solve Initial Value Problem 322 A ID: TCALCI1W 4.85-4 Diff: 0 Page Ref: 256-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCI1W 4.4-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCI1W 4.14-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCI1W 4.14-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCI1W 4.14-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCIIW 4.14-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 324 A ID: TCALCIIW 4.14-7 INF0 Page Ref: 328-315 Objective: (4.8) Solve Initial Value Problem 325 A ID: TCALCIIW 4.14-7 ID: ID: ID: ID: ID: ID: ID: ID: ID: ID:	Answer Key Testname: 155CH4 329) C D: TCALCIIW 4.8.7-10 D: TCALCIIW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D D: TCALCIIW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.2) Find Function Given P(x): Locate Relative Extrema 31) B D: TCALCIIW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 32 D D: TCALCIIW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.8) Find Antiderivative 330 D D: TCALCIIW 4.1.8-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D DIF CCALCIIW 42.6-3 Diff: 0 Page Ref: 267-261
Answer Key Testname: 155CH4 318) C 10: TCALC11W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C 11: TCALC11W 46.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C 10: TCALC11W 48.8-4 Diff: 0 Page Ref: 298-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A 10: TCALC11W 42.2-3 Diff: 0 Page Ref: 295-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A 10: TCALC11W 48.5-4 Diff: 0 Page Ref: 295-315 Objective: (4.8) Solve Initial Value Problem 323 A D: TCALC11W 41.4-7 Diff: 0 Page Ref: 285-233 Otherwise (41 Function Contention	Answer Key Testname: 155CH4 329) C D: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D D: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 31) B D: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 32) D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 33) D D: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 325-233 Objective: (4.1) Find Absolute Extrema on Interval 34) D D: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Purchase and Paint
Answer Key Testname: 155CH4 318) C ID: TCALC11W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALC11W 46.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use LHopital's Rule To Find Limit II 320) C ID: TCALC11W 48.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A ID: TCALC11W 42.2-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322) A ID: TCALC11W 48.5-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Initial Value Problem 323) A ID: TCALC11W 41.4-7 Diff: 0 Page Ref: 256-263 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALC11W 41.4-7 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval	Answer Key Testname: 155CH4 329) C ID: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Appe: Particle Kinematics I 30) D ID: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B ID: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.3) Find Antiderivative 333 D ID: TCALC11W 4.14-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D ID: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 335 D
Answer Key Testname: 155CH4 318) C D: TCALCIIW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C D: TCALCIIW 46.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 200 C D: TCALCIIW 4.8.94 Diff: 0 Page Ref: 208-315 Objective: (4.8) Solve Apps: Particle Kinematics II 21 A D: TCALCIIW 4.23 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 22 A D: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 256-315 Objective: (4.8) Solve Initial Value Problem 23 A D: TCALCIIW 4.14-7 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 23 A D: TCALCIIW 4.12-2	Answer Key Testname: 155CH4 329) C ID: TCALCHW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330 D ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (b) Given f(x): Locate Relative Extrema 331 B ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 332 D ID: TCALCHW 4.8.1-3 Diff: 0 Page Ref: 338-315 Objective: (4.3) Find Antiderivative 333 D ID: TCALCHW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D ID: TCALCHW 4.2.6-3 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 335 A ID: TCALCHW 4.3.2-1
Answer Key Testname: 155CH4 318) C ID: TCALCI1W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C ID: TCALCI1W 4.62-1 Diff: 0 Page Ref: 293-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C ID: TCALCI1W 4.85-4 Diff: 0 Page Ref: 293-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A ID: TCALCI1W 4.22-3 Diff: 0 Page Ref: 256-361 Objective: (4.8) Solve Initial Value Problem 322 A ID: TCALCI1W 4.85-4 Diff: 0 Page Ref: 245-253 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCI1W 4.14-7 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 329 A ID: TCALCI1W 4.12-2 Diff: 0 Page Ref: 245-253	Answer Key Testname: 155CH4 329) C D: TCALC1IW 4.8.7-10 D: TCALC1IW 4.8.7-10 D: TCALC1IW 4.8.7-10 D) TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given F(x): Locate Relative Extrema 331) B D: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 322 D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 263-261 Objective: (4.3) Find Antiderivative 333 D D: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D D: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (2.2) Find Function Given Derivative and Point 335 A D: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 263-267
Answer Key Testname: 155CH4 318) C DI: TCALC11W 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C DI: TCALC11W 46.2-1 Diff: 0 Page Ref: 298-298 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320 C DI: TCALC11W 48.8-4 Diff: 0 Page Ref: 298-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321 A DI: TCALC11W 42.2-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A DI: TCALC11W 48.5-4 Diff: 0 Page Ref: 286-315 Objective: (4.8) Solve Initial Value Problem 323 A DI: TCALC11W 41.4-7 Diff: 0 Page Ref: 287-233 Objective: (4.1) Find Absolute Extrema on Interval 324 A DI: TCALC11W 41.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 325 A DI: TCALC11W 41.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 326 A DI: TCALC11W 41.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval	Answer Key Testname: 155CH4 329) C D: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 388-315 Objective: (4.8) Solve Apps Particle Kinematics I 30) D D: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 253-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 31) B D: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 32) D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 256-261 Objective: (4.3) Find Antiderivative 33) D D: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 252-23 Objective: (4.1) Find Absolute Extrema on Interval 34) D D: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 35) A D: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 256-267 Objective: (4.3) Analyze f(x) Given f(x): Determine Monotonic Intervals
Answer Key Testname: 155CH4 318) C ID: TCALCHW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C ID: TCALCHW 4.6.2-1 Diff: 0 Page Ref: 203-208 Objective: (4.6) Set LPoipala Rule To Find Limit II 320) C ID: TCALCHW 4.8.8-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A ID: TCALCHW 4.8.8-4 Diff: 0 Page Ref: 365-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322) A ID: TCALCHW 4.8.5-4 Diff: 0 Page Ref: 326-315 Objective: (4.8) Solve Initial Value Problem 323 A ID: TCALCHW 4.14-7 Diff: 0 Page Ref: 325-253 Objective: (4.1) Find Absolute Extrema on Interval 324 B ID: TCALCHW 4.14-7 Diff: 0 Page Ref: 325-253 Objective: (4.1) Find Absolute Extremum from Graph 325 B D: TCALCHW 4.14-6	Answer Key Testname: 155CH4 329) C D: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D D: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B D: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322 D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 265-261 Objective: (4.3) Find Antiderivative 333 D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 265-263 Objective: (4.1) Find Absolute Extrema on Interval 334 D D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 335 A D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Determine Monotonic Intervals 336 D D: TCALC11W 4.5.2.6
Answer Key Testname: 155CH4 318) C 1D: TCALCIIW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C 1D: TCALCIIW 4.62-1 Diff: 0 Page Ref: 238-238 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 320) C 1D: TCALCIIW 4.8.8-4 Diff: 0 Page Ref: 38-315 Objective: (4.8) Solve Apps: Particle Kinematics II 321) A 1D: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 368-315 Objective: (4.2) Solve Initial Value Problem 322 A 1D: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 388-315 Objective: (4.1) Find Absolute Externa on Interval 323 A 1D: TCALCIIW 4.11-7 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Externa on Interval 324 A 1D: TCALCIIW 4.12-2 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Externa on Interval 329 A 1D: TCALCIIW 4.15-4 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Externa on Interval 329 B 1D: TCALCIIW 4.8.1-6 Diff: 0 Page Ref: 388-315	Answer Key Testname: 155CH4 229) C ID: TCALCHW 4.87-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330 D ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (b) Given f(x): Locate Relative Extrema 331 B ID: TCALCHW 4.3.4-7 Diff: 0 Page Ref: 265-261 Objective: (2.2) Find Function Given Derivative and Point 332 D ID: TCALCHW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.2) Find Antiderivative 333 D ID: TCALCHW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D ID: TCALCHW 4.2.6-3 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 335 A ID: TCALCHW 4.3.2-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (b) Given f(x): Determine Monotonic Intervals 336 D ID: TCALCHW 4.5.3-6 DIF COLUME 4.5.3-6 DIF 0 Page Ref: 278-286
Answer Key Testname: 155CH4 318) C 1D: TCALCIIW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C 1D: TCALCIIW 46.2-1 Diff: 0 Page Ref: 230-238 Objective: (4.3) Use L'Hopital's Rule To Find Limit II 320) C 1D: TCALCIIW 4.8-8-4 Diff: 0 Page Ref: 308-315 Objective: (4.3) Solve Apps: Particle Kinematics II 321 A 1D: TCALCIIW 4.8-5-4 Diff: 0 Page Ref: 326-315 Objective: (4.3) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A 1D: TCALCIIW 4.8-5-4 Diff: 0 Page Ref: 326-315 Objective: (4.4) Solve Initial Value Problem 323 A 1D: TCALCIIW 4.14-7 Diff: 0 Page Ref: 325-335 Objective: (4.1) Find Absolute Extrema on Interval 324 A 1D: TCALCIIW 4.14-7 Diff: 0 Page Ref: 325-235 Objective: (4.1) Find Absolute Extrema on Interval 325 B 1D: TCALCIIW 4.1-6 Diff: 0 Page Ref: 325-335 Objective: (4.1) Find Absolute Extremum from Graph 327 B 10: TCALCIIW 4.8-1-6 Diff: 0 Page Ref: 335-335 Objective: (4.8) Sint Andiderivative	Answer Key Testname: 155CH4 329) C ID: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D ID: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.2) Find Function Given f(x): Locate Relative Extrema 331) B ID: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.3) Find Antiderivative 333 D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 340 D ID: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 355 A ID: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 256-261 Objective: (4.3) Analyze (tx) Given f(x): Determine Monotonic Intervals 360 D ID: TCALC1IW 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (5) Solve Apps: Business and Economics
Answer Key Testmame: 155CH4 318) C ID:TCALCIIW 42.6-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319 C ID:TCALCIIW 4.6.2-1 Diff: 0 Page Ref: 293-298 Objective: (4.0) Use L'Hopital's Rule To Find Limit II 200 C ID:TCALCIIW 4.8.8-4 Diff: 0 Page Ref: 208-315 Objective: (4.0) Solve Apps: Particle Kinematics II 21) A ID:TCALCIIW 4.2.2-3 Diff: 0 Page Ref: 208-315 Objective: (4.2) Deturnie of Function Satisfies Hypothesis of Mean Value Theorem 22) A ID:TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 208-315 Objective: (4.3) Find Absolute Extrema on Interval 23) A ID:TCALCIIW 4.1.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 24) A ID:TCALCIIW 4.1.2-2 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 25) B ID:TCALCIIW 4.1.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extrema on Interval 26) A ID:TCALCIIW 4.1.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.3) Find Absolute Extrema on Interval 27) B ID:TCALCIIW 4.1.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.3) Find Absolute Extrema on Interval 28) A ID:TCALCIIW 4.1.4-7 Diff: 0 Page Ref: 245-233 Objective: (4.3) Find Absolute Extrema on Interval 290 D	Answer Key Testname: 155CH4 329) C D: TCALC11W 4.8.7-10 Diff 0 Page Ref: 308-315 Objective: (4.8) Solve Apps Particle Kinematics I 30) D D: TCALC11W 4.3.3-7 Diff 0 Page Ref: 253-267 Objective: (4.3) Analyze f(x) Given f(x): Locate Relative Extrema 31) B D: TCALC11W 4.2.6-4 Diff 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 32) D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 256-261 Objective: (4.3) Find Antiderivative 33) D D: TCALC11W 4.1.4-3 Diff: 0 Page Ref: 255-253 Objective: (4.1) Find Absolute Extrema on Interval 34) D D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 35) A D: TCALC11W 4.3.2-1 Diff: 0 Page Ref: 256-267 Objective: (4.3) Analyze f(x) Given f(x): Determine Monotonic Intervals 36) D D: TCALC11W 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 37) D
Answer Key Testmame: 155CH4 318 C ID: TCALCIIW 42.5-5 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 319 C ID: TCALCIIW 4.6.2-1 Diff: 0 Page Ref: 253-288 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 200 C ID: TCALCIIW 4.8.8-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 321 A ID: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A ID: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 323 A ID: TCALCIIW 4.8.5-4 Diff: 0 Page Ref: 268-215 Objective: (4.1) Find Absolute Extremu on Interval 324 A ID: TCALCIIW 4.14-7 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Extremum from Craph 325 B ID: TCALCIIW 4.8.1-6 Diff: 0 Page Ref: 245-233 Objective: (4.8) Find Antiderivative 326 D ID: TCALCIIW 4.8.1-6 Diff: 0 Page Ref: 245-233 Objective: (4.8) Find Antiderivative 326 D ID: TCALCIIW 4.8.1-6 Diff: 0 Page Ref: 245-233 Objective: (4.8) Find Antiderivative 327 D	Answer Key Testname: 155CH4 329) C D: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D D: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B D: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322 D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 265-261 Objective: (4.3) Find Antiderivative 333 D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 265-261 Objective: (4.1) Find Absolute Extrema on Interval 334 D D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 335 A D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Determine Monotonic Intervals 336 D D: TCALC11W 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 337 D D: TCALC11W 4.8.2-1
Answer Key Testname: 155CH4 318) C DFTCALC11W 426-5 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Panetonic Given Derivative and Point 319 C DFTCALC11W 448-4 Diff: 0 Page Ref: 283-288 Objective: (4.3) Golve Apps: Particle Kinematics II 20 C DFTCALC11W 448-4 Diff: 0 Page Ref: 283-315 Objective: (4.3) Solve Apps: Particle Kinematics II 21 A DTTCALC11W 422-3 Diff: 0 Page Ref: 285-261 Objective: (4.3) Solve Initial Value Problem 32 A DTTCALC11W 445-4 Diff: 0 Page Ref: 285-235 Objective: (4.3) Solve Initial Value Problem 32 A DTTCALC11W 414-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 32 A DTTCALC11W 414-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 33 A DTTCALC11W 414-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 34 D DTTCALC11W 414-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 35 B DTTCALC11W 41-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 36 D DIFTCALC11W 41-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremu on Interval 37 A DIFTCALC11W 41-7 Diff: 0 Page Ref: 285-233 Objective: (4.1) Find Absolute Extremum from Graph 36 D DIFTCALC11W 42-7-3 DIff: 0 Page Ref: 285-281 Objective: (4.1) Find Absolute Extremum from Graph 37 A DIFTCALC11W 42-7-3 DIff: 0 Page Ref: 285-281 DIFTCALC11W 42-7-3 DIFT: 0 Page Ref: 285-281 DIFTCALC11W 42-7-3 DIFTCALC11W 42-7-3 DIFTCALC11W 42-7-4 DIFTCALC11W 42-7-4 DIFTCALC11W 42-7-4 DIFTCALC11W 42-7-4 DIFTCALC11W 42-7-4 DIFTCALC11W	Answer Key Testname: 155CH4 329) C ID: TCALCHW 4.87-10 Diff: 0 Page Ref: 208-315 Objective: (4.8) Solve Apps: Particle Kinematics I 330 D ID: TCALCHW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(k): Locate Relative Extrema 331 B ID: TCALCHW 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 332 D ID: TCALCHW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 333 D ID: TCALCHW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 334 D ID: TCALCHW 4.2.6-3 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 335 A ID: TCALCHW 4.3.2-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(k): Determine Monotonic Intervals 336 D ID: TCALCHW 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 337 D ID: TCALCHW 4.8.2-1 Diff: 0 Page Ref: 308-315 Diff: 0 Page Ref:
Answer Key Testname: 155CH4 318) C ID TCALCIIW 42.6-5 Dif: 0 Page Ref: 256-261 Objective: (42) Find Function Given Derivative and Point 319) C ID TCALCIIW 4.6-2-1 Dif: 0 Page Ref: 230-298 Objective: (42) Bolpala Rule To Find Limit II 320) C ID TCALCIIW 4.8-5-4 Dif: 0 Page Ref: 286-315 Objective: (42) Determine if Function Satisfies Hypothesis of Mean Value Theorem 321 A ID TCALCIIW 4.8-5-4 Dif: 0 Page Ref: 286-315 Objective: (43) Solve haps Particle Kinematics II 321 A ID TCALCIIW 4.8-5-4 Dif: 0 Page Ref: 286-315 Objective: (43) Solve Initial Value Problem 323 A ID TCALCIIW 4.14-7 Dif: 0 Page Ref: 286-315 Objective: (41)Find Absolute Extreman from Craph 324 A ID TCALCIIW 4.14-7 Dif: 0 Page Ref: 285-235 Objective: (41)Find Absolute Extreman from Craph 325 Dif: 0 Page Ref: 285-235 Objective: (42) Solve As-315 Objective: (42) Solve As-325 Objective: (42) Solve As-326 Objective: (42) Solve As-326 Objective: (43) Solve As-326 Objective: (42) Solve As-326 Objective: (42) Solve As-326 Objective: (42) Solve As-326 Objective: (42) Solve As-326 Objective: (43) Solve As-326 Objective: (42) Solve As-326 Objective: (43) Solve As-326 Objective: (43) Solve As-326 Objective: (43) Solve As-326 Objective: (44) Solve As-326 Objective: (45) Solve As	Answer Key Testname: 155CH4 329) C ID: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D ID: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 331) B ID: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 263-261 Objective: (4.2) Find Function Given Derivative and Point 322 D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative 333 D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Absolute Extrema on Interval 34 D ID: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 253-261 Objective: (4.2) Find Function Given Derivative and Point 353 A ID: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 253-267 Objective: (4.3) Analyze (x) Given f(x): Determine Monotonic Intervals 36 D ID: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 337 D ID: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics 337 D ID: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 363-315 Objective: (4.8) Find Indefinite Integral
Answer Key Testname: 155CH4 318) C DTCALCHW 42.6-5 Dif: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 319) C DTCALCHW 46.2-1 Dif: 0 Page Ref: 233-288 Objective: (4.6) Use L'Hopital's Rule To Find Limit II 20) C DTCALCHW 48.8-4 Dif: 0 Page Ref: 388-315 Objective: (4.8) Solve Apps Particle Kinematics II 21) A DTCALCHW 48.5-4 Dif: 0 Page Ref: 256-261 Objective: (4.2) Determine if Function Satisfies Hypothesis of Mean Value Theorem 22) A DTCALCHW 48.5-4 Dif: 0 Page Ref: 256-261 Objective: (4.1) Find Absolute Extrema on Interval 23) A DTCALCHW 41.2-2 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 24) A DTCALCHW 48.1-6 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 25) D DTCALCHW 48.1-6 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 26) D DTCALCHW 48.1-6 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 26) D DTCALCHW 48.1-6 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 26) D DTCALCHW 48.1-6 Dif: 0 Page Ref: 235-235 Objective: (4.1) Find Absolute Extrema on Interval 27) D DTCALCHW 42.7-3 Dif: 0 Page Ref: 235-261 Objective: (4.2) Find Absolute Extrema on Interval 28) D DTCALCHW 41.9-4	Answer Key Testname: 155CH4 329) C D: TCALC1IW 4.8.7-10 D: TCALC1IW 4.8.7-10 D: TCALC1IW 4.8.7-10 D: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 253-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B D: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 32) D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 256-261 Objective: (4.3) Find Antiderivative 33) D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 256-261 Objective: (4.1) Find Absolute Extrema on Interval 34) D D: TCALC1IW 4.1.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 35) A D: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 256-267 Objective: (4.3) Analyze f(x) Given f(x): Determine Monotonic Intervals 36) D D: TCALC1IW 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (4.3) Find Indefinite Integral 37) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 38) D
Answer Key Testname: 155CH4 318) C DD TCALCIIW 42.6-5 Dif: 0 Page Ref: 256-261 Objective: (42) Find Function Given Derivative and Point 319) C DD TCALCIIW 44.6-2-1 Dif: 0 Page Ref: 23-298 Objective: (40) Ext Integrals Rele To Find Limit II 20) C DD TCALCIIW 48.8-4 Dif: 0 Page Ref: 388-315 Objective: (48) Solve hipps Particle Kinematics II 21) A DT CALCIIW 48.5-4 Dif: 0 Page Ref: 388-315 Objective: (41) Determine if Function Satisfies Hypothesis of Mean Value Theorem 22) A DT CALCIIW 48.5-4 Dif: 0 Page Ref: 388-315 Objective: (41) Find Absolute Extrema on Interval 23) A DD TCALCIIW 41.1-7 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 24) A DT TCALCIIW 41.1-2-2 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 25) B DT TCALCIIW 48.1-6 Dif: 0 Page Ref: 328-315 Objective: (41) Find Absolute Extrema on Interval 26) D DT TCALCIIW 48.1-6 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 27) D DT TCALCIIW 41.1-7 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 28) D DT TCALCIIW 41.1-7 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 29) D DT TCALCIIW 41.1-7 Dif: 0 Page Ref: 325-235 Objective: (41) Find Absolute Extrema on Interval 20) D DT TCALCIIW 41.1-7 Dif: 0 Page Ref: 325-35 Dif: 0 Page Ref: 325-35	 Answer Key Testname: 155CH4 329) C D: TCALC11W 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps Particle Kinematics I 30) D D: TCALC11W 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (x) Given f(x): Locate Relative Extrema 31) B D: TCALC11W 4.2.6-4 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 322 D D: TCALC11W 4.8.1-3 Diff: 0 Page Ref: 308-315 Objective: (4.3) Find Antiderivative 333 D D: TCALC11W 4.14-3 Diff: 0 Page Ref: 256-261 Objective: (4.1) Find Absolute Extrema on Interval 344 D D: TCALC11W 4.2.6-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 353 A D: TCALC11W 4.3.2-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(x): Determine Monotonic Intervals 36 D D: TCALC11W 4.5.3-6 Diff: 0 Page Ref: 279-286 Objective: (4.8) Find Indefinite Integral 37 D D: TCALC11W 4.8.2-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Indefinite Integral 38 D D: TCALC11W 4.16-3 Diff: 0 Page Ref: 245-253
Answer Key Testname: 155CH4 318) C DFTCALCTIW 42.6-5 Diff 0 Page Ref: 25-261 Objective: (4.2) Find Function Cirven Derivative and Point Objective: (4.2) Find Function Cirven Derivative and Point Objective: (4.2) User Interface Cirven Derivative and Point Diff 0 Page Ref: 20-280 Objective: (4.0) Use L'Hopital's Rule To Find Limit II 20) C DFTCALCTIW 4.8.8-4 Diff 0 Page Ref: 20-315 Objective: (4.2) Dermine if Function Satisfies Hypothesis of Mean Value Theorem 32) A DFTCALCTIW 4.8.5-4 Diff 0 Page Ref: 256-261 Objective: (4.2) Dermine if Function Satisfies Hypothesis of Mean Value Theorem 32) A DFTCALCTIW 4.8.5-4 Diff 0 Page Ref: 256-263 Objective: (4.2) Dermine if Function Satisfies Hypothesis of Mean Value Theorem 32) A DFTCALCTIW 4.8.5-4 Diff 0 Page Ref: 256-263 Objective: (4.3) Find Absolute Externa on Interval 32) A DFTCALCTIW 4.8.1-4 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Externum from Graph 35) B DFTCALCTIW 4.8.1-4 Diff: 0 Page Ref: 245-233 Objective: (4.2) Solve Apps: Particle Kinematics 32) D DFTCALCTIW 4.27-3 Diff: 0 Page Ref: 245-233 Objective: (4.2) Solve Apps: Particle Kinematics 32) D DFTCALCTIW 4.19-4 Diff: 0 Page Ref: 245-233 Objective: (4.2) Solve Apps: Particle Kinematics 32) D DFTCALCTIW 4.19-4 Diff 0 Page Ref: 245-233 Objective: (4.1) Find Absolute Externa of Absolute Value Function	Answer Key Testname: 155CH4 329) C D: TCALCIIW 4.8.7-10 D: TCALCIIW 4.8.7-10 D: TCALCIIW 4.8.7-10 D: TCALCIIW 4.3.7 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(k): Locate Relative Extrema 331) B D: TCALCIIW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 32 D D: TCALCIIW 4.1.6-3 Diff: 0 Page Ref: 245-253 Objective: (4.3) Find Andorivative 333 D D: TCALCIIW 4.1.4-3 Diff: 0 Page Ref: 245-253 Objective: (4.2) Find Absolute Extrema on Interval 34 D D: TCALCIIW 4.2.6-3 Diff: 0 Page Ref: 265-261 Objective: (4.2) Find Function Given Derivative and Point 35 A D: TCALCIIW 4.3.2-1 Diff: 0 Page Ref: 263-267 Objective: (4.3) Analyze (k) Given f(k): Determine Monotonic Intervals 36 D D: TCALCIIW 4.3.2-6 Diff: 0 Page Ref: 279-286 Objective: (4.3) Solve Apps: Business and Economics 37 D D: TCALCIIW 4.8.2-1 Diff: 0 Page Ref: 308-315 Objective: (4.3) Find Indefinite Integral 38 D D: TCALCIIW 4.16-3 Diff: 0 Page Ref: 275-230 Objective: (4.3) Find Indefinite Integral 38 D D: TCALCIIW 4.16-3 Diff: 0 Page Ref: 275-273 Objective: (4.1) Find Critical Points and Local Extreme Values
Answer Key Testname: 155CH4 318) C DF CALCTIW 42.6-5 Diff. 0 Page Ref: 25-261 Objective: (42) Find Function Given Derivative and Point 319 C DF CALCTIW 42.6-1 Diff. 0 Page Ref: 292-288 Objective: (40) Use L'Hopital's Rule To Find Limit II 320 C DF CTALCTIW 42.8-4 Diff. 0 Page Ref: 292-281 Objective: (43) Solve Apper Particle Kinematics II 321 A DF CTALCTIW 42.2-3 Diff. 0 Page Ref: 292-261 Objective: (42) Determine if Function Satisfies Hypothesis of Mean Value Theorem 322 A DF CTALCTIW 42.2-3 Diff. 0 Page Ref: 208-215 Objective: (42) Solve Initial Value Froblem 323 A DF CTALCTIW 44.8-4 Diff. 0 Page Ref: 238-233 Objective: (41) Find Absolute Extrema on Interval 324 A DF CTALCTIW 44.1-6 Diff. 0 Page Ref: 242-233 Objective: (42) Find Absolute Extrema from Graph 325 B DF CTALCTIW 44.1-6 Diff. 0 Page Ref: 242-233 Objective: (42) Find Absolute Extrema from Graph 326 B DF CTALCTIW 44.1-6 Diff. 0 Page Ref: 242-233 Objective: (42) Find Absolute Extrema from Graph 327 B DF CTALCTIW 44.1-6 Diff. 0 Page Ref: 242-233 Objective: (42) Find Absolute Extrema from Graph 328 B DF CTALCTIW 44.1-7 Diff. 0 Page Ref: 242-233 Objective: (42) Find Absolute Extrema from Graph 329 B DF CTALCTIW 44.1-7-3 Diff. 0 Page Ref: 242-233 Objective: (42) Find Contentervative 329 B DF CTALCTIW 44.1-7-4 Diff. 0 Page Ref: 242-233 Objective: (42) Tranker from Extrema from Graph 329 B DF CTALCTIW 44.1-7-4 Diff. 0 Page Ref: 242-233 Diff. 0 Page Ref: 242-235 Diff. 0 P	Answer Key Testname: 155CH4 329) C ID: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 308-315 Objective: (4.8) Solve Apps: Particle Kinematics I 30) D ID: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 263-267 Objective: (4.2) Find Function Given perivative and Point 32) D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 268-261 Objective: (4.2) Find Function Given Derivative and Point 32) D ID: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 268-261 Objective: (4.3) Find Antiderivative 33) D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 256-261 Objective: (4.1) Find Absolute Extrema on Interval 34) D ID: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 35) A ID: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 256-261 Objective: (4.3) Analyze (tx) Given f(x): Determine Monotonic Intervals 36) D ID: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 279-286 Objective: (4.3) Find Indefinite Integral 38) D ID: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 245-233 Objective: (4.8) Find Indefinite Integral 38) D ID: TCALC1IW 4.1.6-3 Diff: 0 Page Ref: 245-233 Objective: (4.1) Find Critical Points and Local Extreme Values 39) D
Answer Key Testname: 155CH4 38) C D: TCALCHW 426-5 Diff: 0 Page Ref: 252-261 Objective: (4.2) Find Function Circen Derivative and Point 39 C D: TCALCHW 426-1 Diff: 0 Page Ref: 252-288 Objective: (4.0) Use 174opta18 Rule To Find Limit II 20 C D: TCALCHW 48.8-4 Diff: 0 Page Ref: 282-281 Objective: (4.0) Solve Apps Particle Kinematics II 21 A D: TCALCHW 42.2-3 Diff: 0 Page Ref: 282-281 Objective: (4.3) Solve Apps Particle Kinematics II 22 A D: TCALCHW 42.5-4 Diff: 0 Page Ref: 282-281 Objective: (4.3) Folder Externa on Interval 23 A D: TCALCHW 41.4-7 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Externa on Interval 24 A D: TCALCHW 41.2-2 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Externa on Interval 25 B D: TCALCHW 41.2-7 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Externa of Absolute Value Function 26 D D: D: TCALCHW 41.2-7 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Externa of Absolute Value Function 27 D D: D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Externa of Absolute Value Function 28 B D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 29 B D: D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 29 B D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 29 B D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 29 D D: D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 29 D D: D: TCALCHW 41.9-4 Diff: 0 Page Ref: 282-283 Objective: (4.1) Find Absolute Future and Absolute Value Function 20 Diff: 0 Page Ref: 282-287 D: D: D	Answer Key Testname: 155CH4 229) C D: TCALC1IW 4.8.7-10 Diff: 0 Page Ref: 388-315 Objective: (4.8) Solve Apps Particle Kinematics I 30) D D: TCALC1IW 4.3.3-7 Diff: 0 Page Ref: 253-267 Objective: (4.3) Analyze (tx) Given f(x): Locate Relative Extrema 31) B D: TCALC1IW 4.2.6-4 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find Function Given Derivative and Point 32) D D: TCALC1IW 4.8.1-3 Diff: 0 Page Ref: 256-261 Objective: (4.3) Find Antiderivative 33) D D: TCALC1IW 4.1.4-3 Diff: 0 Page Ref: 255-261 Objective: (4.1) Find Absolute Extrema on Interval 34) D D: TCALC1IW 4.2.6-3 Diff: 0 Page Ref: 255-261 Objective: (4.2) Find Function Given Derivative and Point 35) A D: TCALC1IW 4.3.2-1 Diff: 0 Page Ref: 255-267 Objective: (4.3) Analyze (tx) Given f(x): Determine Monotonic Intervals 36) D D: TCALC1IW 4.5.3-6 Diff: 0 Page Ref: 255-265 Objective: (4.3) Find Indefinite Integral 37) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 255-265 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.8.2-1 Diff: 0 Page Ref: 245-233 Objective: (4.8) Find Indefinite Integral 38) D D: TCALC1IW 4.1.6-3 Diff: 0 Page Ref: 245-253 Objective: (4.3) Find Indefinite Integral 38) D D: TCALC1IW 4.1.6-3 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Critical Points and Local Extreme Values 39) D D: TCALC1IW 4.2.6-8 Diff: 0 Page Ref: 245-261

Answer Key Testname: 155CH4	Answer Key Testname: 155CH4
340) D ID: TCALCIIW 4.3.4-2 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Monotonic Intervals of f(x)	351) B ID: TCALC11W 4.2.1-2 Diff: 0 Page Ref: 256-261 Objective: (4.2) Find c in f(c) = f(a)/(b - a)
341) B ID: TCALC11W 4.1.7-10 Diff: 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values	
342) D ID: TCALC11W 4.1.5-5 Diff: 0 Page Ref: 245-253 Objective: (4.1) Find Values and Locations of Extrema	
343) B ID: TCALC11W 4.2.7-5 Dfff: 0 Page Ref: 256-261 Objective: (4.2) Solve Apps: Particle Kinematics	
344) D ID: TCALC11W 4.8.1-9 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Antiderivative	
345) B ID: TCALC11W 4.5.3-8 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Business and Economics	
346) A ID: TCALC11W 4.8.6-1 Diff: 0 Page Ref: 308-315 Objective: (4.8) Find Plane Curve with Given Properties	
347) B ID: TCALC11W 4.8.3-4 Diff: 0 Page Ref: 308-315 Objective: (4.8) Check Antiderivative Formula (Y/N)	
348) A Model ID: TCALC11W 4.1.7-8 Model Diff: 0 Page Ref: 245-253 Objective: (4.1) Solve Apps: Extreme Values	
349) B B ID: TCALC11W 4.5.1-5 Diff: 0 Page Ref: 279-286 Objective: (4.5) Solve Apps: Geometry Construction Construction	
350) D ID: TCALCIIW 4.3.4-3 Diff: 0 Page Ref: 263-267 Objective: (4.3) Find Monotonic Intervals of f(x)	
145	146