

| Your Name / Adınız - Soyadınız                                                                                                                                                                                                                                                                                                 | Your Signature / İmza         |         |                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|-------------------|-------|
|                                                                                                                                                                                                                                                                                                                                |                               |         |                   |       |
|                                                                                                                                                                                                                                                                                                                                |                               |         |                   |       |
| Student ID # / Öğrenci No                                                                                                                                                                                                                                                                                                      |                               |         |                   |       |
|                                                                                                                                                                                                                                                                                                                                |                               |         |                   |       |
| Professor's Name / Öğretim Üyesi                                                                                                                                                                                                                                                                                               | Your Department / Bölüm       |         |                   |       |
|                                                                                                                                                                                                                                                                                                                                |                               |         |                   |       |
| • This exam is closed book.                                                                                                                                                                                                                                                                                                    |                               | •       | $\langle \rangle$ |       |
| • Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$ ).                                                                                                                                                                                                                                               | , except as                   |         | <u> </u>          |       |
| noted in particular problems.                                                                                                                                                                                                                                                                                                  | _                             | Problem | Points            | Score |
| <ul> <li>Calculators, cell phones are not allowed.</li> <li>In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating any limits, derivatives.</li> </ul> |                               | 1       | 25                |       |
|                                                                                                                                                                                                                                                                                                                                |                               | 2       | 25                |       |
|                                                                                                                                                                                                                                                                                                                                |                               | 3       | 25                |       |
| • Place a box around your answer to each question.                                                                                                                                                                                                                                                                             |                               |         | 25                |       |
| • If you need more room, use the backs of the pages and indicate that                                                                                                                                                                                                                                                          |                               | 4       | 25                |       |
| you have done so.                                                                                                                                                                                                                                                                                                              |                               | Total:  | 100               |       |
| • Do not ask the invigilator anything.                                                                                                                                                                                                                                                                                         |                               |         |                   | 1     |
| • Use a <b>BLUE ball-point pen</b> to fill the cover sheet. Please that your exam is complete.                                                                                                                                                                                                                                 | make sure                     |         |                   |       |
| • Time limit is 75 min.                                                                                                                                                                                                                                                                                                        |                               |         |                   |       |
| o not write in the table to the right.                                                                                                                                                                                                                                                                                         |                               |         |                   |       |
| 1. Given: The surface with equation $x^3 + y^3 + z^3 = 5xyz$ and the (a) 13 Points Find $\frac{\partial z}{\partial x}\Big _{(2,1,1)}$ and $\frac{\partial z}{\partial y}\Big _{(2,1,1)}$ .                                                                                                                                    | the point $P_0(2,1,1)$ on it. |         |                   |       |
|                                                                                                                                                                                                                                                                                                                                |                               |         | /                 |       |

Solution: We can do this in two ways. Similarly, differentiating with First we can differentiate implicitly with respect respect to y (by treating xto x (remember y is held constant). constant), we have  $\frac{\partial}{\partial x}\left(x^3 + y^3 + z^3\right) = \frac{\partial}{\partial x}(5xyz)$  $\frac{\partial}{\partial y}\left(x^3 + y^3 + z^3\right) = \frac{\partial}{\partial y}(5xyz)$  $3y^{2} + 3z^{2}\frac{\partial z}{\partial y} - x + z + y\frac{\partial z}{\partial y} + 3y^{2} = 5xz + 5xy\frac{\partial z}{\partial x}$  $3x^2 + 3z^2 \frac{\partial z}{\partial x} = 5yz + 5xy \frac{\partial z}{\partial x}$  $(3z^2 - 5xy)\frac{\partial z}{\partial x} = 5yz - 3x^2$  $(3z^2 - 5xy)\frac{\partial z}{\partial y} = 5xz - 3y^2$  $\frac{\partial z}{\partial x} = \frac{5yz - 3x^2}{3z^2 - 5xy}$  $\frac{\partial z}{\partial y} = \frac{5xz - 3y^2}{3z^2 - 5xy}$  $\Rightarrow \left. \frac{\partial z}{\partial x} \right|_{(2,1,1)}$  $\Rightarrow \left. \frac{\partial z}{\partial y} \right|_{(2,1,1)}$  $=\frac{5(1)(1)-3(2)^2}{3(1)^2-5(2)(1)}=\boxed{1}.$  $=\frac{5(2)(1)-3(1)^2}{3(1)^2-5(2)(1)}=\boxed{-1}.$ As an alternative method, let  $F(x, y, z) = x^3 + y^3 + z^3 - 5xyz = 0$ . Then  $F_x(x, y, z) = 3x^2 - 5yz$ ,  $F_y(x, y, z) = 3y^2 - 5yz$  and

$$F_{z}(x,y,z) = 3z^{2} - 5xz. \text{ Therefore, by implicit differentiation formulas (Theorem 8, page 780 of the textbook)}$$
$$\frac{\partial z}{\partial x}\Big|_{(2,1,1)} = -\frac{F_{x}}{F_{z}}\Big|_{(2,1,1)} = -\frac{3x^{2} - 5yz}{3z^{2} - 5xz}\Big|_{(2,1,1)} = \boxed{\frac{7}{7} = 1}$$
$$\frac{\partial z}{\partial y}\Big|_{(2,1,1)} = -\frac{F_{y}}{F_{z}}\Big|_{(2,1,1)} = -\frac{3y^{2} - 5yz}{3z^{2} - 5xz}\Big|_{(2,1,1)} = \boxed{-\frac{-7}{-7} = -1}.$$

(b) 12 Points Find the equation for plane tangent to this surface at  $P_0$ .

## Solution: Since

 $F_x(x,y,z) = 3x^2 - 5yz \Rightarrow F_x(2,1,1) = 3(2)^2 - 5(1)(1) = 7$   $F_y(x,y,z) = 3y^2 - 5yz \Rightarrow F_y(2,1,1) = 3(1)^2 - 5(2)(1)0 = -7$  $F_z(x,y,z) = 3z^2 - 5xy \Rightarrow F_z(2,1,1) = 3(1)^2 - 5(2)(1) = -7,$ 

we have  $\nabla F(2, 1, 1) = 7\mathbf{i} - 7\mathbf{j} - 7\mathbf{k}$ . Hence an equation of the plane tangent to the surface at  $P_0$  is

$$\nabla F(2,1,1) \cdot ((x-2)\mathbf{i} + (y-1)\mathbf{j} + (z-1)\mathbf{k}) = 0 \Rightarrow z-1 = (x-2) - (y-1);$$

that is, x - y - z = 0

## 2. (a) 13 Points $\int_1^4 \frac{3\sinh\sqrt{x}}{\sqrt{x}} dx = ?$

Solution: Substitute 
$$u = \sqrt{x}$$
 and so  $du = \frac{1}{2\sqrt{x}} dx$ . When  $x = 1$ , we have  $u = 1$  and when  $x = 4$ , we have  $u = 2$ . Hence  

$$\int_{1}^{4} \frac{3\sinh(\sqrt{x})}{\sqrt{x}} dx = 6 \int_{1}^{4} \frac{\sinh(\sqrt{x})}{2\sqrt{x}} dx = 6 \int_{1}^{2} \sinh u du = 6 (\cosh u) |_{1}^{2} = 6(\cosh 2 - \cosh 1) = 6 \left(\frac{e^{2} + e^{-2}}{2} - \frac{e^{1} + e^{-1}}{2}\right)$$

(b) 12 Points 
$$\int \frac{dx}{1 + (3x+1)^2} = ?$$
  
Solution: Let  $u = 3x + 1$ . Then  $du = 3 dx$ . Thus, we have  
 $\int \frac{dx}{1 + (3x+1)^2} = \frac{1}{3} \int \frac{3 dx}{1 + (3x+1)^2} = \frac{1}{3} \int \frac{du}{1 + u^2} = \frac{1}{3} \tan^{-1} u + C = \frac{1}{3} \tan^{-1} (3x+1) + C$ 
  
P<sup>413, pr58</sup>

3. (a) 14 Points Does the series  $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$  converge absolutely, conditionally, or diverge? Justify your answer.

Solution: This is an alternating series of the form  $\sum_{n=1}^{\infty} (-1)^n a_n$  with  $a_n = \frac{1}{1+\sqrt{n}} > 0$  for all  $n \ge 1$ . Using the Alternating Series Test (AST),

• 
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{1 + \sqrt{n}} = 0$$

and

• 
$$\frac{a_{n+1}}{a_n} = \frac{1}{1+\sqrt{n+1}} \cdot \frac{1+\sqrt{n}}{1} = \frac{1+\sqrt{n}}{1+\sqrt{n+1}} < 1 \text{ for all } n \ge 1,$$

so  $a_{n+1} < a_n$  for all  $n \ge 1$ , so the series converges. But by the Limit Comparison Test (LCT), letting

$$a_n = \frac{1}{1 + \sqrt{n}}, \quad b_n = \frac{1}{\sqrt{n}}$$

we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{n}} + 1} = 1$$

so 
$$0 < c = 1 < \infty$$
 and  $\sum \frac{1}{\sqrt{n}}$  diverges implies  $\sum \frac{1}{1+\sqrt{n}}$  diverges too.  
Therefore  $\sum_{n=1}^{\infty} |(-1)^n a_n| = \sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$  diverges. So  $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$  converges conditionally.

(b) 11 Points Evaluate the integral  $\int (x+1)^2 e^x dx$ 

**Solution:** We shall integrate by parts twice. Let  $u = (x+1)^2$  and  $dv = e^x dx$ . Then du = 2(x+1)dx and choose  $v = e^x$ . Therefore

$$\int (x+1)^2 e^x dx = \int u dv = uv - \int v du$$
  
=  $(x+1)^2 e^x - \int \underbrace{2(x+1)}_u \underbrace{e^x}_{dv} dx$   
=  $(x+1)^2 e^x - \left[\underbrace{2(x+1)}_u \underbrace{e^x}_v - \int \underbrace{e^x}_v \underbrace{2dx}_{du}\right] = (x+1)^2 e^x - 2(x+1)e^x + 2\int e^x dx$   
=  $\underbrace{(x+1)^2 e^x - 2(x+1)e^x + 2e^x + C}_{u}$ 

(a) 12 Points Find the distance from the point Q(0,2,3) to the line  $\mathscr{L}: \begin{cases} x=3+2t, \\ y=1+t, \\ z=-1+2t \end{cases}$ 4.

> Solution: We shall use the distance formula  $d = \frac{|\vec{PQ} \times \mathbf{v}|}{|\mathbf{v}|}$ . Here (by taking t = 0) P(3, 1, -1) is a point on  $\mathscr{L}$  and  $\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$  is a vector that is parallel to  $\mathscr{L}$ . Now we have  $\vec{PQ} = (0-3)\mathbf{i} + (2-1)\mathbf{j} + (3-(-1))\mathbf{k} = -3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$  and so  $\vec{PQ} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & 4 \\ 2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 4 \\ 1 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -3 & 4 \\ 2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -3 & 2 \\ 1 & 1 \end{vmatrix} \mathbf{k}$ = -2i + 14j - 5kTherefore, we have  $d = \frac{|\vec{PQ} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{4 + 196 + 25}}{\sqrt{4 + 1 + 4}} = \frac{\sqrt{225}}{\sqrt{9}} = \frac{15}{3} = \boxed{5}$

p.695, pr.37

(b) 13 Points Find parametric equations for the line in which the planes x + 2y + z = 3 and x - 4y + 3z = 5 intersect. Solution: We begin by finding two points on the line. Any two on the line would do, but we choose to find the points where line pierces *yz*-plane and the *xz*-plane. We get the former by setting x = 0 and solving the resulting equations  $\begin{cases}
2y + z = 3 \\
-4y + 3z = 5
\end{cases}$ simultaneously. This yields the point (0, 2/5, 11/5). Similarly, by setting y = 0, we get the equations  $\begin{cases} x + z = 3 \\ x + 3z = 5 \end{cases}$ . Solving these yields the point (2, 0, 1). Consequently a water are the transformed to the equation x = 1.

these yields the point (2,0,1). Consequently a vector parallel to the required line is

$$\mathbf{v} = (2-0)\mathbf{i} + (0-(2/5))\mathbf{j} + (1-(11/5))\mathbf{k} = 2\mathbf{i} - \frac{2}{5}\mathbf{j} - \frac{6}{5}\mathbf{k}$$

We can clear the denominators out by multiplying this vector by 5, we can take v to be v = 10i - 2j - 6k. Using (2,0,1) for  $(x_0, y_0, z_0)$ , we get

$$\mathscr{L}: \begin{cases} x = 2 + 10t, \\ y = 0 - 2t, \\ z = 1 - 6t \end{cases}$$

An alternative solution is based on the fact that line of intersection for planes is perpendicular to both of their normals. The vector  $\mathbf{n}_1 := \mathbf{i} + 2\mathbf{j} + \mathbf{k}$  is normal to the first plane;  $\mathbf{n}_2 := \mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$  is normal to the second. Since

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & -4 & 3 \end{vmatrix} = 10\mathbf{i} - 2\mathbf{j} - 6\mathbf{k},$$

the vector  $\mathbf{v} = 14\mathbf{i} + 2\mathbf{j} + 15\mathbf{k}$  is parallel to the required line. Next, find any point on the line of intersection, for example,

|                                                  |                        | $\int x = 2 + 10t,$ |   |
|--------------------------------------------------|------------------------|---------------------|---|
| (2,0,1), and proceed as in the earlier solution. | $\mathscr{L}: \langle$ | y = -2t,            |   |
|                                                  |                        | z = 1 - 6t          |   |
| p.452, pr.24                                     |                        |                     | ] |