

| Your Name / Adınız - Soyadınız                                                                                                                                                                                                                         | Your Signature / İmza                   |         |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|----------|-------|
|                                                                                                                                                                                                                                                        |                                         |         |          |       |
| Student ID # / Öğrenci No                                                                                                                                                                                                                              |                                         |         |          |       |
| Professor's Name / Öğretim Üyesi                                                                                                                                                                                                                       | Your Department / Bölüm                 |         |          |       |
| <ul> <li>This exam is closed book.</li> <li>Give your answers in exact form (for example π/3 or 5√3 noted in particular problems.</li> </ul>                                                                                                           | B), except as                           | Problem | Points   | Score |
| <ul> <li>Calculators, cell phones are not allowed.</li> <li>In order to receive credit, you must show all of your we do not indicate the way in which you solved a problem, you little or no credit for it, even if your answer is correct.</li> </ul> | ork. If you<br>you may get<br>Show your | 1 2     | 20<br>20 |       |
| <ul> <li>work in evaluating any limits, derivatives.</li> <li>Place a box around your answer to each question.</li> </ul>                                                                                                                              |                                         | 3       | 20       |       |
| • If you need more room, use the backs of the pages and i you have done so.                                                                                                                                                                            | ndicate that                            | 4       | 20       |       |
| <ul> <li>Do not ask the invigilator anything.</li> <li>Use a <b>BLUE ball-point pen</b> to fill the cover sheet. F</li> </ul>                                                                                                                          | Please make                             | Total:  | 100      |       |

• Time limit is 90 min.

Do not write in the table to the right.

1. Suppose 
$$f(x, y) = \frac{xy+1}{x^2 - y^2}$$

(a) 10 Points Sketch the domain of f.



(b) 10 Points Show that the limit  $\lim_{(x,y)\to(1,-1)} f(x,y)$  does not exist.

**Solution:** Along the path y = -1, we have

$$\lim_{(x,y)\to(1,-1)}\frac{xy+1}{x^2-y^2} = \lim_{(x,-1)\to(1,-1)}\frac{-x+1}{x^2-1}$$
$$= \lim_{x\to 1}\frac{-1}{x+1}$$
$$= \frac{-1}{2}$$

However, along the path  $y = -x^2$ , we have

$$\lim_{(x,y)\to(1,-1)} \frac{xy+1}{x^2 - y^2} = \lim_{(x,-x^2)\to(1,-1)} \frac{-x^3+1}{x^2 - x^4}$$
$$= \lim_{x\to 1} \frac{(1-x)(1+x+x^2)}{(1-x)x^2(x+1)}$$
$$= \lim_{x\to 1} \frac{1+x+x^2}{x^2(x+1)}$$
$$= \frac{3}{2}$$

Since both limits do not agree, the original limit DOES NOT EXIST.  $_{\rm p.452,\,pr.24}$ 

- 2. Given the surface  $z = \frac{1}{x^2 + 3y^2}$  and the point  $P_0(1, 1, 1/4)$  on it.
  - (a) 7 Points Write the equation of the plane tangent to this surface at  $P_0$ .

Solution: Let 
$$F(x,y,z) = \frac{1}{x^2 + 3y^2} - z$$
 so that  $\nabla F(x,y,z) = \frac{-2x}{(x^2 + 3y^2)^2} \mathbf{i} + \frac{-6y}{(x^2 + 3y^2)^2} \mathbf{j} - \mathbf{k}$  and  $\nabla F(1,1,1/4) = \frac{-2}{16} \mathbf{i} + \frac{-6}{16} \mathbf{j} - \mathbf{k}$ . The tangent plane equation is then  
 $-\frac{1}{8}(x-1) - \frac{3}{8}(y-1) - (z-\frac{1}{4}) = 0 \Rightarrow \boxed{x+3y+8z=6}$ 



(b) 5 Points Write the parametric equations of the normal to this surface at  $P_0$ .

Solution: The normal has parametric equations L:  $\begin{cases} x = 1 - \frac{1}{8}t, \\ y = 1 - \frac{3}{8}t, \\ z = \frac{1}{4} - t \end{cases}$ 

(c) 8 Points If 
$$x = \cos(3t)$$
 and  $y = \sin(3t)$ , then  $\frac{dz}{dt}\Big|_{t=0} = ?$ 

Solution:  

$$\begin{aligned}
\frac{dz}{dt} &= \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \\
&= \frac{-2x}{(x^2 + 3y^2)^2} \cdot (-3\sin(3t)) + \frac{-6y}{(x^2 + 3y^2)^2} \cdot (3\cos(3t)) \\
&= \frac{-2\cos(3t)}{(\cos^2(3t) + 3\sin^2(3t))^2} \cdot (-3\sin(3t)) + \frac{-6\sin(3t)}{(\cos^2(3t) + 3\sin^2(3t))^2} \cdot (3\cos(3t)) \\
&= \frac{dz}{dt} \Big|_{t=0} = 0
\end{aligned}$$

3. (a) 10 Points  $\int \tan^{-1} x \, dx = ?$ 

Solution: We integrate by parts. Let 
$$u = \tan^{-1} x$$
 and so  $dv = dx$ . Then  $du = \frac{1}{1+x^2} dx$  and  $v = x$ . Therefore,  

$$\int \tan^{-1} x \, dx = \int u \, dv = uv - \int v \, du$$

$$= x \tan^{-1} x - \int \frac{x}{1+x^2} \, dx$$

$$= x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + C$$
p443, pr.68

(b) 10 Points 
$$\int_0^{\pi/4} \sin^2(2\theta) \cos^3(2\theta) d\theta = ?$$

Solution: Let  $y = \sin(2\theta)$  and so  $dy = 2\cos(2\theta) d\theta$ . Now, when  $\theta = 0$ , we have  $y = \sin 0 = 0$ . When  $x = \pi/4$ , we have  $y = \sin(\pi/2) = 1$ . Then  $\int_0^{\pi/4} \sin^2(2\theta) \cos^3(2\theta) d\theta = \int_0^{\pi/4} \sin^2(2\theta) \cos^3(2\theta) d\theta$   $= \int_0^{\pi/4} \sin^2(2\theta) \cos^2(2\theta) \cos(2\theta) d\theta$   $= \frac{1}{2} \int_0^{\pi/4} \sin^2(2\theta) (1 - \sin^2(2\theta)) 2\cos(2\theta) d\theta$   $= \frac{1}{2} \int_0^1 y^2 (1 - y^2) dy = \frac{1}{2} \int_0^1 (y^2 - y^4) dy$ 

 $= \frac{1}{2} \left[ \frac{y^3}{3} - \frac{y^5}{5} \right]_0^1 = \frac{1}{2} \left[ \frac{1}{3} - \frac{1}{5} \right] = \boxed{\frac{1}{15}}$ 

4. Two lines L1: 
$$\begin{cases} x = -1 + t, \\ y = 2 + t, \\ z = 1 - t \end{cases}$$
 and L2: 
$$\begin{cases} x = 1 - 4s, \\ y = 1 + 2s, \\ z = 2 - 2s \end{cases}$$
 are given.

(a) 7 Points Find the point of intersection of L1 and L2.

**Solution:** To determine where *L*1 and *L*2 intersect, we solve simultaneously -1 + t = 1 - 4s and 2 + t = 1 + 2s and we find the unique solution t = 0, s = 1/2. When we plug t = 0 in z = 1 - t we get z = 1. Similarly, if we plug s = 1/2 in z = 2 - 2s, we get the same z = 1 which means they both agree to imply that  $\boxed{L1 \cap L2 = \{(1,2,1)\}}.$ 

p.695, pr.29

(b) 6 Points Find  $\theta$ , if  $\theta$  is the angle between L1 and L2.

Solution: First notice that the vector  $\mathbf{v}_1 = \mathbf{i} + \mathbf{j} - \mathbf{k}$  is parallel to *L*1 and  $\mathbf{v}_2 = -4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$  is parallel to *L*2. We know that  $\theta$  is also the angle between  $\mathbf{v}_1$  and  $\mathbf{v}_2$ . Hence

$$\cos \theta = \frac{\mathbf{v_1} \cdot \mathbf{v_2}}{|\mathbf{v_1}||\mathbf{v_2}|} = \frac{(1)(-4) + (1)(2) + (-1)(-2)}{\sqrt{(-4)^2 + (2)^2 + (-2)^2}\sqrt{(1)^2 + (1)^2 + (-1)^2}}$$
$$= \frac{0}{\sqrt{24}\sqrt{3}} = 0$$

Therefore  $\cos \theta = 0 \Rightarrow \theta = \pi/2$ .

(c) 7 Points Write the equation of the plane determined by L1 and L2.



Solution: We shall write the equation of the plane through (1,2,1) and admitting the vector  $\bm{n}=\bm{v_1}\times\bm{v_2}$  as a normal vector. Now we have

$$\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ -4 & 2 & -2 \end{vmatrix}$$
$$= 0\mathbf{i} + 6\mathbf{i} + 6\mathbf{k}$$

This implies that 0(x-1)+6(y-2)+6(z-1)=0 and so the equation of the desired plane is y+z=3.



5. (a) 
$$\overline{7 \text{ Points}} \lim_{n \to \infty} \left(\frac{n-5}{n}\right)^n = ?$$
  
Solution: This limit has the indeterminate 1°°. Let  $y := \left(\frac{x-5}{x}\right)^x = \left(1-\frac{5}{x}\right)^x$ . Then  
 $\ln y = x \ln \left(1-\frac{5}{x}\right) = \frac{\ln(1-\frac{5}{x})}{1/x}$ .  
Now  
 $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(1-\frac{5}{x}) \to \ln 1 = 0}{1/x \to 0} \to \frac{0}{0}$ .  
By the L'Hôpital's Rule, we have  
 $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\frac{1-\frac{5}{x}(x^2)}{-\frac{1}{x^2}}}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{-5}{1-\frac{5}{x}} = -5$ .  
Hence  $\ln y \to -5$  as  $x \to \infty$ . Therefore  $y \to e^{-5}$  as  $x \to \infty$ . This shows that  $\lim_{n \to \infty} \left(\frac{n-5}{n}\right)^n = e^{-5}$ .  
(b)  $\overline{5 \text{ Points}}$  Does the series  $\sum_{n=1}^{\infty} \left(\frac{n-5}{n}\right)^n$  converge? Justify your answer.

**Solution:** Let  $a_n = \left(\frac{n-5}{n}\right)^n$ . By part (a), we have  $\lim_{n \to \infty} a_n = e^{-5} \neq 0$ . By the *n*th term test, the series *diverges*.

(c) 8 Points Does the series  $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$  converge or diverge? Justify your answer.

**Solution:** We use the Limit Comparison Test. For each  $n = 1, 2, \dots$ , let  $a_n = \frac{1}{n\sqrt{n^2 - 1}} > 0$  and  $b_n = \frac{1}{n^2} > 0$ . Then

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\overline{n\sqrt{n^2 - 1}}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{\sqrt{n^2 - 1}} = \lim_{n \to \infty} \frac{n^2}{\sqrt{1 - \frac{1}{n^2}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 - \frac{1}{n^2}}} = 1$$

So  $0 < c = 1 < \infty$  and  $\sum_{n=2}^{\infty} \frac{1}{n^2}$  is a convergent *p*-series (*p* = 2 > 1), the Limit Comparison Test yields that the given series *converges*.

Alternatively, one can use the (Direct) Comparison Test. For this, notice that  $n^2 - 1 > \frac{1}{4}n^2$  for each  $n = 2, 3, \cdots$ . Hence  $\sqrt{n^2 - 1} > \frac{1}{2}n$  for  $n = 2, 3, \cdots$ .

$$0 < a_n = \frac{1}{n\sqrt{n^2 - 1}} < \frac{2}{n^2}, \qquad n = 2, 3, \cdots$$

Now  $\sum_{n=2}^{\infty} \frac{2}{n^2}$  converges as it is a constant multiple of the convergent *p*-series  $\sum_{n=2}^{\infty} \frac{1}{n^2}$  with (p = 2 > 1). Therefore, the given series does converge by the Comparison Test.