

Do not write in the table to the right.

0

1. (a) 9 points Evaluate the integral $\int x^2 \sin x dx$.

Solution: We choose $u = x^2$ and $dv = \sin x dx$. Then du = 2x dx and $v = -\cos x$. With this choice, integration by parts yields

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx.$$

For the last integral, we could do it using a further integration by parts. We now choose u = x and so $dv = \cos x \, dx$. Then du = dx and $v = \sin x$. Applying integration by parts to the last integral, we now have

 $x^2 \sin x \, dx$

=

 $x^2\cos x + 2\int x\cos x dx$

 $\cos x + 2\left(x\sin x - \int \sin x \, dx\right)$

 $-x^2\cos x + 2x\sin x + 2\cos x + C$

(b) 9 points Evaluate the integral
$$\int \frac{t^2+8}{t^2-5t+6} dt$$
.

Solution: $\frac{t^2+8}{t^2-5t+6} = 1$	$+\frac{5t+2}{t^2-5t+6}$ (after	long division)	5t+2 t^2-5t+6	$=\frac{5t+2}{(t-3)(t-2)}$	$=\frac{A}{t-3}+\frac{B}{t-2}$
5t + 2 = A(t - 2) + B(t - 3)	= (A+B)t + (-2A)	$(-3B) \Rightarrow$	1 51 + 0	(r - 3)(r - 2)	

$$\begin{vmatrix} A+B=5\\ -2A-3B=2 \end{vmatrix}$$

So
$$-B = (10+2) = 12 \Rightarrow B = -12 \Rightarrow A = 17$$
; thus, $\frac{t^2+8}{t^2-5t+6} = 1 + \frac{17}{t-3} + \frac{-12}{t-2}$. Therefore $\int \frac{t^2+8}{t^2-5t+6} = 1 + \frac{17}{t-3} + \frac{-12}{t-2}$. Therefore $\int \frac{t^2+8}{t^2-5t+6} = 1 + \frac{17}{t-3} + \frac{-12}{t-2}$.

(c) 7 points Determine if the integral $\int_0^\infty \frac{dx}{\sqrt{x^6+1}}$ converges or diverges. Explain your answer.

Solution:

$$\int_{0}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} = \int_{0}^{1} \frac{dx}{\sqrt{x^{6}+1}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} < \int_{0}^{1} \frac{dx}{\sqrt{x^{6}+1}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}}} \text{ and } \int_{1}^{\infty} \frac{dx}{x^{3}} = \lim_{b \to \infty} \left[-\frac{1}{2x^{2}} \right]_{1}^{b} = \lim_{b \to \infty} \left(-\frac{1}{2b^{2}} + \frac{1}{2} \right) = \frac{1}{2} \Rightarrow \int_{0}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} \text{ converges by the Direct Comparison Test.}$$

$$p.487, pr.51$$

2. (a) **B** points Does the series
$$\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n}$$
 converge? If so, find its sum.
Solution: $\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n} = 5 \sum_{m=0}^{\infty} (-\frac{1}{4})^n$. The latter is geometric series with the first term $a = 5$ and ratio $r = -\frac{1}{4}$.
Since $|r| = \frac{1}{4}$, it converges to $\frac{a}{1-r} = \frac{5}{1+1/4} = 4$.
(b) **9** points Determine if the series $\sum_{m=1}^{\infty} \frac{(m+3)!}{3!m!^{3n}}$ converges or diverges. Give reasons.
Solution: Use the Ratio Lest.
 $p = \lim_{m \to \infty} \frac{n_{n+1}}{a_n} = \lim_{m \to \infty} \frac{(n+4)!}{3!(n+1)!^{3m+1}(n+3)!} = \lim_{m \to \infty} \frac{n+4}{3(n+1)!} = \frac{1}{3} < 1$,
so the given series converges.
(c) **B** points Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge absolutely, which converge, and which diverge? Give reasons.
Solution: The series has the form $\sum_{n=1}^{\infty} (-1)^n u_n$ where $u_n = \frac{1}{\sqrt{n}}$ is positive, decreasing and converges to 0. Hence $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by the Alternating Series Test, but its series of absolute values $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent *p*-strings with $p = \frac{1}{2}$, so the given series converges conditionally.
3. (a) **15** points Find the radius and interval of convergence for $\sum_{m=0}^{\infty} \frac{n(x+3)^n}{5^n}$.
Solution: If $u_n := \frac{n(x+3)^n}{5^n}$, then
 $\lim_{m=1} \frac{n_{n+1}}{n_n} = \lim_{m=1} \frac{(n(x+1)(x+3)^{n+1}}{5^{n+1}} \frac{n(x+3)}{n(x+3)^n} = \lim_{m=1} \frac{1}{5^n} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{n(x+3)^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{1} = \sum_{m=1}^{\infty} \frac{n(x+3)^n}{5^n} = \sum_{m=1}^{\infty} \frac{n($

(b)
$$\boxed{10 \text{ points}} \quad \text{Find the Taylor series at $x = 0$ for $f(x) = \frac{x^2}{1-2x}$. Give the radius of convergence.
Solution: In the geometric series formula $\sum_{m=0}^{\infty} x^m = \frac{1}{1-x}$ for $-1 < x < 1$, we replace x with 2 x . Hence
 $f(x) = \frac{x^2}{1-2x} = x^2 \sum_{m=0}^{\infty} (2x)^m = \sum_{m=0}^{\infty} 2^n x^{n+2} = x^2 + 2x^3 + 2x^4 + \cdots$.
The series converges only when $|2x| < 1$; that is, when $|x| < \frac{1}{2}$, so the radius of convergence is $\boxed{n-\frac{1}{2}}$ and $I = \left(-\frac{1}{2}, \frac{1}{2}\right)$.
4. (a) $\boxed{8 \text{ points}}$ Find parametrization for the line segment joining the points $(0, 1; 1)$ and $(0, -1, 1)$.
Solution: First, a vector that is parallel to the line is
 $FQ = (0 - 0)(1 + (-1 - 1))(1 + (1 - 1))k = -2)$.
Picking either point will give us equations for the line. Here, we use P , so that the parametric equations for the $\frac{1}{2}$ is $\frac{x}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{$$$