

Your Name / Adınız - Soyadınız	Your Signature / Imza	
Student ID # / Öğrenci No		
Professor's Name / Öğretim Üyesi	Your Department / Bölüm	

- This exam is closed book.
- Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as noted in particular problems.
- Calculators, cell phones are not allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. **Show your work in evaluating any limits, derivatives**.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Do not ask the invigilator anything.
- This exam has 3 pages plus this cover sheet and 4 problems. Please make sure that your exam is complete.

. Time limit is 90 min.

Do not write in the table to the right.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

1. (a) 9 points Evaluate the integral $\int x^2 \sin x dx$.

Solution: We choose $u = x^2$ and $dv = \sin x dx$. Then du = 2x dx and $v = -\cos x$. With this choice, integration by parts yields

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx.$$

For the last integral, we could do it using a further integration by parts. We now choose u = x and so $dv = \cos x dx$. Then du = dx and $v = \sin x$. Applying integration by parts to the last integral, we now have

$$\int x^2 \sin x dx = -x^2 \cos x + 2 \int x \cos x dx$$
$$= -x^2 \cos x + 2 \left(x \sin x - \int \sin x dx \right)$$
$$= \left[-x^2 \cos x + 2x \sin x + 2 \cos x + C \right]$$

p.441, pr.4

(b) 9 points Evaluate the integral $\int \frac{t^2 + 8}{t^2 - 5t + 6} dt$.

Solution: $\frac{t^2+8}{t^2-5t+6} = 1 + \frac{5t+2}{t^2-5t+6}$ (after long division); $\frac{5t+2}{t^2-5t+6} = \frac{5t+2}{(t-3)(t-2)} = \frac{A}{t-3} + \frac{B}{t-2} \Rightarrow 5t+2 = A(t-2) + B(t-3) = (A+B)t + (-2A-3B) \Rightarrow$

$$\left| \begin{array}{c}
A+B=5\\
-2A-3B=2
\end{array} \right\}$$

So $-B = (10+2) = 12 \Rightarrow B = -12 \Rightarrow A = 17$; thus, $\frac{t^2 + 8}{t^2 - 5t + 6} = 1 + \frac{17}{t - 3} + \frac{-12}{t - 2}$. Therefore $\int \frac{t^2 + 8}{t^2 - 5t + 6} = \int \left(1 + \frac{17}{t - 3} + \frac{-12}{t - 2}\right) dt = t + 17 \ln|t - 3| - 12 \ln|t - 2| + C$.

(c) 7 points Determine if the integral $\int_0^\infty \frac{dx}{\sqrt{x^6+1}}$ converges or diverges. Explain your answer.

Solution:

$$\int_{0}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} = \int_{0}^{1} \frac{dx}{\sqrt{x^{6}+1}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} < \int_{0}^{1} \frac{dx}{\sqrt{x^{6}+1}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}}} \text{ and } \int_{1}^{\infty} \frac{dx}{x^{3}} = \lim_{b \to \infty} \left[-\frac{1}{2x^{2}} \right]_{1}^{b} = \lim_{b \to \infty} \left(-\frac{1}{2b^{2}} + \frac{1}{2} \right) = \frac{1}{2} \Rightarrow \int_{0}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} \text{ converges by the Direct Comparison Test.}$$

2. (a) 8 points Does the series $\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n}$ converge? If so, find its sum.

Solution: $\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n} = 5 \sum_{n=0}^{\infty} \left(-\frac{1}{4} \right)^n$. The latter is geometric series with the first term a = 5 and ratio $r = -\frac{1}{4}$. Since $|r| = \frac{1}{4}$, it converges to $\frac{a}{1-r} = \frac{5}{1+1/4} = 4$.

(b) 9 points Determine if the series $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^n}$ converges or diverges. Give reasons.

Solution: Use the Ratio test.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+4)!}{3!(n+1)!3^{n+1}} \frac{3!n!3^n}{(n+3)!} = \lim_{n \to \infty} \frac{n+4}{3(n+1)} = \frac{1}{3} < 1,$$

so the given series converges.

(c) 8 points Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge absolutely, which converge, and which diverge? Give reasons.

Solution: The series has the form $\sum_{n=1}^{\infty} (-1)^n u_n$ where $u_n = \frac{1}{\sqrt{n}}$ is positive, decreasing and converges to 0. Hence $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by the Alternating Series Test, but its series of absolute values $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent *p*-series with $p = \frac{1}{2}$, so the given series converges conditionally.

3. (a) 15 points Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$

Solution: If $a_n := \frac{n(x+3)^n}{5^n}$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x+3)^{n+1}}{5^{n+1}} \frac{5^n}{n(x+3)^n} \right| = \lim_{n \to \infty} \frac{1}{5} \frac{n+1}{n} |x+3| = \frac{|x+3|}{5} < 1 \Leftrightarrow |x+3| < 5$$

so $[R = 5] \Leftrightarrow -5 < x + 3 < 5 \Leftrightarrow -8 < x < 2$. When x = -8, the series becomes $\sum_{n=1}^{\infty} \frac{n(-5)^n}{5^n} = \sum_{n=1}^{\infty} (-1)^n n$ which

diverges by the *n*-th term test. When x = 2, the series becomes $\sum_{n=1}^{\infty} \frac{n(5)^n}{5^n} = \sum_{n=1}^{\infty} n$ which also diverges by the *n*-th term test. Thus, the interval of convergence is I = (-8,2).

(b) 10 points Find the Taylor series at x = 0 for $f(x) = \frac{x^2}{1 - 2x}$. Give the radius of convergence.

Solution: In the geometric series formula $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for -1 < x < 1, we replace x with 2x. Hence

$$f(x) = \frac{x^2}{1 - 2x} = x^2 \sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^n x^{n+2} = x^2 + 2x^3 + 2^2 x^4 + \cdots$$

The series converges only when |2x| < 1; that is, when $|x| < \frac{1}{2}$, so the radius of convergence is $R = \frac{1}{2}$ and $I = \left(-\frac{1}{2}, \frac{1}{2}\right)$.

4. (a) 8 points Find parametrization for the line segment joining the points (0,1,1) and (0,-1,1).

Solution: First, a vector that is parallel to the line is

$$\vec{PQ} = (0-0)\mathbf{i} + (-1-1)\mathbf{j} + (1-1)\mathbf{k} = -2\mathbf{j}$$
.

Picking either point will give us equations for the line. Here, we use P, so that the parametric equations for the line are

$$x = 0$$
, $y = 1 - 2t$, $z = 1$, $0 \le t \le 1$.

p.694, pr.17

(b) 8 points Find equations for the plane through $P_0(2,4,5)$ perpendicular to the line

$$x = 5 + t, y = 1 + 3t, z = 4t$$

Solution: We only need a normal vector \mathbf{n} for the plane we want. The given line is parallel to the vector $\mathbf{v} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$. Hence we can take $\mathbf{n} = \mathbf{v} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$. Therefore the equation for the plane is

$$\mathbf{n} \cdot \vec{P_0}P = 0 \Rightarrow (1)(x-2) + (3)(y-4) + (4)(z-5) = 0$$
$$\Rightarrow x + 3y + 4z = 2 + 12 + 20 = 34$$
$$\Rightarrow x + 3y + 4z = 34$$

p.694, pr.25

(c) 9 points Find the area of the triangle whose vertices are A(1,-1,1), B(0,1,1), and C(1,0,-1).

Solution: We use the formula $\frac{1}{2}(|\vec{AB} \times \vec{AC}|)$.

$$\vec{AB} = (0-1)\mathbf{i} + (1-(-1))\mathbf{j} + (1-1)\mathbf{k}$$

$$= -\mathbf{i} + 2\mathbf{j}$$

$$\vec{AC} = (1-1)\mathbf{i} + (0-(-1))\mathbf{j} + (-1-1)\mathbf{k}$$

$$= \mathbf{j} - 2\mathbf{k}$$

$$\Rightarrow \vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 0 \\ 0 & 1 & -2 \end{vmatrix}$$

$$= -4\mathbf{i} - 2\mathbf{j} - \mathbf{k}$$

Therefore, the required area is

$$\frac{1}{2}|\vec{AB} \times \vec{AC}| = \frac{1}{2}\sqrt{(-4)^2 + (-2)^2 + (-1)^2} = \frac{1}{2}\sqrt{21}$$

p.687, pr.47