

Your Name / Adınız - Soyadınız Your Signature / İmza	
Student ID # / Öğrenci No	
Professor's Name / Öğretim Üyesi Your Department / Bölün	n
• This exam is closed book	
• Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as	
noted in particular problems.	Problem Points Score
• Calculators, cell phones are not allowed.	1 18
• In order to receive credit, you must show all of your work . If you do not indicate the way in which you solved a problem, you may get	2 20
little or no credit for it, even if your answer is correct. Show your work in evaluating any limits, derivatives.	
Place a box around your answer to each question.	3 19
• If you need more room, use the backs of the pages and indicate that	4 20
you have done so.	5 23
Do not ask the invigilator anything.Use a BLUE ball-point pen to fill the cover sheet. Please make	Total: 100
sure that your exam is complete.	
• Time limit is 80 min.	
o not write in the table to the right.	
1. (a) 8 Points Let $f(x) = x^2 - 4x - 5$, $x > 2$. Find the value of df^{-1}/dx at the	the point $x = 0$.
	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1).	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5) - 4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5) - 4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$.	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5) - 4} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = 1$	the point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5) - 4} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = 1$	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5) - 4} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = \pm \sqrt{y + 9} \Rightarrow x = 2 \pm \sqrt{y + 9}$. Therefore, since $x > 2$ is the given restriction on the domain for f^{-1} , the formula for f^{-1} is $f^{-1}(x) = 2 + \frac{1}{2} + \frac{1}{$	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5)-4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = \pm \sqrt{y+9} \Rightarrow x = 2 \pm \sqrt{y+9}$. Therefore, since $x > 2$ is the given restriction on the domain for f^{-1} , the formula for f^{-1} is $f^{-1}(x) = 2 + \sqrt{x+9}$. Hence the derivative we want to find is $(f^{-1})'(x) = \frac{1}{2\sqrt{x+9}}$.	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5)-4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = \pm \sqrt{y+9} \Rightarrow x = 2 \pm \sqrt{y+9}$. Therefore, since $x > 2$ is the given restriction on the domain for f^{-1} , the formula for f^{-1} is $f^{-1}(x) = 2 + \sqrt{x+9}$. Hence the derivative we want to find is $(f^{-1})'(x) = \frac{1}{2\sqrt{x+9}}$ and its value is	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5)-4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = \pm \sqrt{y+9} \Rightarrow x = 2 \pm \sqrt{y+9}$. Therefore, since $x > 2$ is the given restriction on the domain for f^{-1} , the formula for f^{-1} is $f^{-1}(x) = 2 + \sqrt{x+9}$. Hence the derivative we want to find is $(f^{-1})'(x) = \frac{1}{2\sqrt{x+9}}$.	e point $x = 0$.
Solution: <u>Method I:</u> Even though we can find a formula for f^{-1} in this case, we note that $y = 0$ corresponds $x = 5$, and since, $f'(x) = 2x - 4$ To find the value of the derivative of f^{-1} at $x = 0$, we use the inverse function theorem (namely the Theorem 7.1). $(f^{-1})'(0) = \frac{1}{f'(5)} = \frac{1}{2(5)-4} = \begin{bmatrix} 1\\ 6 \end{bmatrix}$ The figure on the right is the graph of f^{-1} with the tangent at the point $x = 0$. <u>Method II:</u> We shall find the formula for f^{-1} . Let $y = x^2 - 4x - 5$. Then $y = (x^2 - 4x + 4) - 4 - 5 \Rightarrow y + 9 = (x - 2)^2 \Rightarrow x - 2 = \pm \sqrt{y+9} \Rightarrow x = 2 \pm \sqrt{y+9}$. Therefore, since $x > 2$ is the given restriction on the domain for f^{-1} , the formula for f^{-1} is $f^{-1}(x) = 2 + \sqrt{x+9}$. Hence the derivative we want to find is $(f^{-1})'(x) = \frac{1}{2\sqrt{x+9}}$ and its value is	e point $x = 0$.

Solution: By applying the Chain Rule and logarithmic derivative rule, we have

$$y = \sqrt{\ln\sqrt{x}} = \left(\ln x^{1/2}\right)^{1/2} = \frac{dy}{dx} = \frac{1}{2} \left(\ln x^{1/2}\right)^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (\ln x^{1/2}) = \frac{1}{2} \left(\ln x^{1/2}\right)^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$$
 Hence we have $\frac{dy}{dx} = \frac{1}{2} \left(\ln x^{1/2}\right)^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2})$. Hence we have $\frac{dy}{dx} = \frac{1}{2} \left(\ln x^{1/2}\right)^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{2} \left(\ln x^{1/2}\right)^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{2} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2})^{-1/2} \cdot \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}).$ Hence we have $\frac{dy}{dx} = \frac{1}{x^{1/2}} \frac{d}{dx} (n^{1/2}) = \frac{1}{x^{1/$

Solution: Let
$$x = 2\sin\theta$$
 where $-\pi/2 \le \theta \le \pi/2$. Then $dx = 2\cos\theta d\theta$. The restriction $0 \le x \le 1$ implies the restriction $0 \le \theta \le \frac{\pi}{6}$,
 $(4 - x^2)^{3/2} = 8\cos^3 \theta$;
 $\int_0^1 \frac{dx}{(4 - x^2)^{3/2}} = \int_0^{\pi/6} \frac{\sqrt{3}}{8\cos\theta} \frac{d\theta}{\theta}$
 $= \frac{1}{4} \int_0^{\pi/6} \frac{d\theta}{\cos^2} \theta = \frac{1}{4} [\tan\theta \frac{\pi}{6} (x - \sqrt{3} + \frac{1}{12} + \frac{1}{4\sqrt{3}}]$
 $\frac{\pi}{4}$. (a) **10**Points) $\int \pi^{\pi/6} dx = ?$
Solution: We will integrate by parts. Let $u = x$ and $dv = e^{4v} dx$. Then we have $dv = dx$ and $v = \frac{1}{2}e^{4v}$. Integration
fy parts, formula yields
 $\int \frac{\pi}{4}e^{-4x^2} - \frac{1}{4}dx = ?$
Solution: The shaded area on the right has value that exactly equals
and so $dv = \cosh dx$. When $x = \ln 2$, we have $u = \sinh(\ln 2)$ =
 $\frac{1}{2}(e^{4x} - e^{-4x^2}) = \frac{1}{2}(2-\frac{1}{2}) = \frac{3}{4}$ and when $x = \ln 4$, we have $u = \sinh(\ln 4) = \frac{1}{2}e^{4x}$. The function $\frac{1}{4}e^{4x}$. The function $\frac{1}{4}e^{4x} + \frac{1}{4}e^{4x} + \frac{1}{4}$

 $\ln |x+1| +$

Therefore,

 \bigcirc

$$\frac{x^3}{x^2 + 2x + 1} = (x - 2) + \frac{3x + 2}{(x + 1)^2}.$$

We decompose the integrand in the following way:

$$\frac{3x+2}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}$$

 \bigcirc

Clearing the fractions changes to

compute the limit

p.487, pr.57

Thus,

$$\int_{0}^{1} \frac{x^{3}}{x^{2} + 2x + 1} dx = \int_{0}^{1} (x - 2) dx + 3 \int_{0}^{1} \frac{dx}{x + 1} - \int_{0}^{1} \frac{dx}{(x + 1)^{2}} = \left[\frac{x^{2}}{2} + 2x + \frac{1}{2}\right] = \left[\frac{1}{2} - 2 + 3\ln 2 + \frac{1}{2}\right] - (1) = \left[\frac{3\ln 2 - 2}{2}\right]$$

(b) 10 Points Investigate the convergence/divergence for $\int_{4}^{\infty} \frac{2}{t^{3/2} - 1} dt$.

2012-20

Solution: First note that $f(t) := \frac{2}{t^{3/2} - 1} > 0$ for all $t \ge 4$. We wish to use the Limit Comparison Test. Let $g(t) := \frac{1}{t^{3/2}} > 0$. Then we

$$L := \lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{\frac{2}{t^{3/2} - 1}}{\frac{1}{t^{3/2}}} = 2\lim_{t \to \infty} \frac{t^{3/2}}{t^{3/2} - 1} = 2.$$

Now $0 < L = 2 < +\infty$ and $\int_4^{\infty} \frac{1}{t^{3/2}} dt = \lim_{b \to \infty} \int_4^b \frac{1}{t^{3/2}} dt =$ $\lim_{b \to \infty} \left[\frac{t^{-3/2+1}}{-3/2+1} \right]_4^b = -2 \lim_{b \to \infty} \left(\frac{1}{\sqrt{b}} - 2 \right) = 4 \text{ giving that } \int_4^{\infty} \frac{1}{t^{3/2}} dt$ converges. Thus by the Limit Comparison test, the given integral converges.

Alternatively, (Direct) Comparison Test could be more convenient to apply. Notice that when $t \ge 4$, we have

$$0 < \frac{2}{t^{3/2} - 1} \le \frac{2}{2t^{3/2}} = \frac{1}{t^{3/2}}$$

We have shown above that $\int_{4}^{\infty} \frac{1}{t^{3/2}} dt$ converges. Hence by (Direct) Comparison Test $\int_{4}^{\infty} \frac{2}{t^{3/2} - 1} dt$ converges too.