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1. (a) (11 Points) Use the trigonometric substitution x = secθ to evaluate
∫ x√

x2−1
dx.

Solution: Since x = secθ , dx = secθ tanθ dθ and also
√

x2−1 =
√

sec2 θ −1 =
√

tan2 θ = tanθ ;∫ x√
x2−1

dx =
∫ secθ

���tanθ
secθ���tanθ dθ

=
∫

sec2
θ dθ

= tanθ +C

=
√

sec2 θ −1+C

=
√

x2−1+C

p.72, pr.15

(b) (11 Points) If an =
ln(n+1)√

n
does the sequence {an}∞

n=1 converge? If so, find its limit.

Solution:

lim
n→∞

an = lim
n→∞

ln(n+1)√
n

(L′H)
= lim

n→∞

1
n+1

1
2
√

n

= lim
n→∞

2
√

n
n+1

= lim
n→∞

(
2√
n

)
1+
(

1
n

) =
0

1+0
= 0

p.94, pr.34
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2. (a) (10 Points) Find the derivative of y = ln(coshz).

Solution:

dy
dz

=
d
dz

(ln(coshz)) =
1

coshz
d
dz

(coshz)

=
sinhz
coshz

= tanhz

p.72, pr.8

(b) (13 Points) Evaluate the integral
∫

sin2 xcos5 x dx.

Solution: First notice that if we let y = sinx and so dy = cosx dx, then∫
sin2 xcos5 x dx =

∫
sin2 xcos4 xcosx dx =

∫
sin2 x(1− sin2 x)2 cosx dx

=
∫

y2(1− y2)2 dy

Hence ∫
sin2 xcos5 x dx =

∫
y2(1− y2)2 dy

=
∫

y2(1−2y2 + y4) dy =
∫
(y2−2y4 + y6) dy

=
1
3

y3− 2
5

y5 +
1
7

y7 +C

=
1
3

sin3 x− 2
5

sin5 x+
1
7

sin7 x+C

p.83, pr.52
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3. (a) (11 Points) Evaluate the integral
∫ lnx

x2 dx.

Solution: We shall integrate by parts. Let u = lnx and so dv =
1
x2 dx. Then du =

1
x

dx and choose v =−1
x

. Therefore

∫ lnx
x2 dx =

∫
udv = uv−

∫
vdu

= (lnx)
(
−1

x

)
−
∫ (
−1

x

)
1
x

dx

=− lnx
x

+
∫ 1

x2 dx

=− lnx
x
− 1

x
+C

= − lnx
x
− 1

x
+C

p.95, pr.68

(b) (14 Points) Evaluate the integral
∫ x3 + x2

x2 + x−2
dx.

Solution: By long division of polynomials, we have

x+0

x2 + x−2
)

x3 + x2 +0x+0
− x3− x2 +2x

0x2 +2x+0
0x2 +0x+0

2x+0

Therefore,
x3 + x2

x2 + x−2
= x+

2x
x2 + x−2

.

We decompose the integrand in the following way:

2x
x2 + x−2

=
2x

(x+2)(x−1)
=

A
x+2

+
B

x−1

Clearing the fractions changes to

2x = A(x−1)+B(x+2)⇒ 2x = x(A+B)−A+2B⇒ A+B = 2,−A+2B = 0⇒ A = 4/3,B = 2/3.

Thus, ∫ x3 + x2

x2 + x−2
dx =

∫ (
x+

4/3
x+2

+
2/3

x−1

)
dx =

∫
x dx+

∫ 4/3
x+2

dx+
∫ 2/3

x−1
dx

=
1
2

x2 +
4
3

ln |x+2|+ 2
3

ln |x−1|+C

p.112, pr.26
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4. Aşağıdaki serlerin yakınsaklığını araştırınız. Investigate the convergence or divergence of the following series.

(a) (10 Points)
1

2 ·3
+

1
3 ·4

+
1

4 ·5
+ · · ·+ 1

(n+1)(n+2)
+ · · ·

© Converges. © Diverges. Series’ Sum:

Solution: First, by partial fraction decomposition of the general term, we have

an =
1

(n+1)(n+2)
=

1
n+1

− 1
n+2

sn = a1 +a2 +a3 + · · ·+an−1 +an

=

(
1
2
−

�
��1
3

)
+

(
�
��1
3
−

�
��1
4

)
+

(
�
��1
4
−

�
��1
5

)
+ · · ·+

(
�
��1
n
−
�
��
1

n+1

)
+

(
�

��
1

n+1
− 1

n+2

)
=

1
2
− 1

n+2

⇒ lim
n→∞

sn = lim
n→∞

(
1
2
− 1

n+2

)
=

1
2

p.72, pr.8

(b) (10 Points)
∞

∑
n=1

√
n

n2 +1

© Converges. © Diverges. Test Used:

Solution: Let an =

√
n

n2 +1
> 0 for each n≥ 1. We have

n2 +1 > n2⇒ n2 +1 > n3/2n3/2 =
√

n ·n3/2⇒ n2 +1√
n

>��
√

n n3/2

��
√

n

⇒
√

n
n2 +1

<
1

n3/2 for each n≥ 1 .

Now
∞

∑
n=1

1
n3/2 is a convergent p-series with p = 3/2. hence by the Direct Comparison Test the given series converges.

Also use the Limit comparison Test with
∞

∑
n=1

1
n3/2 .

p.82, pr.35

(c) (10 Points)
∞

∑
n=1

n!
(2n+1)!

© Converges. © Diverges. Test Used:

Solution: Let an =
n!

(2n+1)!
. Use the Ratio Test. Then, since an+1 =

(n+1)!
(2(n+1)+1)!

=
(n+1)!
(2n+3)!

an+1

an
=

(n+1)!
(2n+3)!

(2n+1)!
n!

=
(n+1)��n!

(2n+3)(2n+2)����(2n+1)!
����(2n+1)!

��n!
=

1
2(2n+3)

⇒ ρ = lim
n→∞

an+1

an
= lim

n→∞

1
2(2n+3)

= 0

Since ρ = 0 < 1, it follows by Ratio Test, the series converges.
p.82, pr.35


