Math 114 Summer 2017	First Exam					July 1	3, 2017
Your Name / Ad - Soyad	Signature / İmza	Problem	1	2	3	4	Total
(75 min.)	.)	Points:	22	23	25	30	100
(mavi tüken	nmez!)	Score:					

Time limit is **75 minutes**. If you need more room on your exam paper, you may use the empty spaces on the paper. You have to show your. Answers without reasonable-even if your results are true- work will either get zero or very little credit.

1. (a) (11 Points) Use the trigonometric substitution
$$x = \sec \theta$$
 to evaluate $\int \frac{x}{\sqrt{x^2 - 1}} dx$.

Solution: Since $x = \sec \theta$, $dx = \sec \theta \tan \theta \, d\theta$ and also $\sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = \tan \theta$; $\int \frac{x}{\sqrt{x^2 - 1}} \, dx = \int \frac{\sec \theta}{\tan \theta} \sec \theta \tan \theta \, d\theta$ $= \int \sec^2 \theta \, d\theta$ $= \tan \theta + C$ $= \sqrt{\sec^2 \theta - 1} + C$ $= \sqrt{\sec^2 \theta - 1} + C$

(b) (11 Points) If $a_n = \frac{\ln(n+1)}{\sqrt{n}}$ does the sequence $\{a_n\}_{n=1}^{\infty}$ converge? If so, find its limit.

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln(n+1)}{\sqrt{n}} \stackrel{(L'H)}{=} \lim_{n \to \infty} \frac{1}{\frac{n+1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{n+1}$$

$$= \lim_{n \to \infty} \frac{\left(\frac{2}{\sqrt{n}}\right)}{1+\left(\frac{1}{n}\right)} = \frac{0}{1+0} = \boxed{0}$$
p.94, pr.34

2. (a) (10 Points) Find the derivative of $y = \ln(\cosh z)$.

(b) (13 Points) Evaluate the integral $\int \sin^2 x \cos^5 x \, dx$.

Solution: First notice that if we let $y = \sin x$ and so $dy = \cos x \, dx$, then

$$\int \sin^2 x \cos^5 x \, dx = \int \sin^2 x \cos^4 x \cos x \, dx = \int \sin^2 x (1 - \sin^2 x)^2 \cos x \, dx$$
$$= \int y^2 (1 - y^2)^2 \, dy$$

Hence

$$\int \sin^2 x \cos^5 x \, dx = \int y^2 (1 - y^2)^2 \, dy$$

= $\int y^2 (1 - 2y^2 + y^4) \, dy = \int (y^2 - 2y^4 + y^6) \, dy$
= $\frac{1}{3}y^3 - \frac{2}{5}y^5 + \frac{1}{7}y^7 + C$
= $\frac{1}{3}\sin^3 x - \frac{2}{5}\sin^5 x + \frac{1}{7}\sin^7 x + C$

p.83, pr.52

3. (a) (11 Points) Evaluate the integral $\int \frac{\ln x}{x^2} dx$.

Solution: We shall integrate by parts. Let $u = \ln x$ and so $dv = \frac{1}{x^2} dx$. Then $du = \frac{1}{x} dx$ and choose $v = -\frac{1}{x}$. Therefore
$\int \frac{\ln x}{x^2} \mathrm{d}x = \int u \mathrm{d}v = uv - \int v \mathrm{d}u$
$= (\ln x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \frac{1}{x} dx$
$= -\frac{\ln x}{x} + \int \frac{1}{x^2} \mathrm{d}x$
$= -\frac{\ln x}{x} - \frac{1}{x} + C$
$= \boxed{-\frac{\ln x}{x} - \frac{1}{x} + C}$
p.95, pr.68

(b) (14 Points) Evaluate the integral $\int \frac{x^3 + x^2}{x^2 + x - 2} dx$.

Solution: By long division of polynomials, we have

$$\begin{array}{r} x+0 \\
 x^{2}+x-2 \\
 \hline
 x^{3}+x^{2}+0x+0 \\
 -x^{3}-x^{2}+2x \\
 \hline
 0x^{2}+2x+0 \\
 0x^{2}+0x+0 \\
 \hline
 2x+0
\end{array}$$

Therefore,

$$\frac{x^3 + x^2}{x^2 + x - 2} = x + \frac{2x}{x^2 + x - 2}.$$

We decompose the integrand in the following way:

$$\frac{2x}{x^2 + x - 2} = \frac{2x}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$$

Clearing the fractions changes to

$$2x = A(x-1) + B(x+2) \Rightarrow 2x = x(A+B) - A + 2B \Rightarrow A + B = 2, -A + 2B = 0 \Rightarrow A = 4/3, B = 2/3.$$

Thus,

$$\int \frac{x^3 + x^2}{x^2 + x - 2} \, \mathrm{d}x = \int \left(x + \frac{4/3}{x + 2} + \frac{2/3}{x - 1} \right) \, \mathrm{d}x = \int x \, \mathrm{d}x + \int \frac{4/3}{x + 2} \, \mathrm{d}x + \int \frac{2/3}{x - 1} \, \mathrm{d}x$$
$$= \boxed{\frac{1}{2}x^2 + \frac{4}{3}\ln|x + 2| + \frac{2}{3}\ln|x - 1| + C}$$

p.112, pr.26

Math 114 Summer 2017	Page 4 of 4		July 13, 2017
4. Aşağıdaki serlerin yakınsal	klığını araştırınız. Investigate the convergence	or divergence of the following series.	
(a) (10 Points) $\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 3}$	$\frac{1}{4} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{(n+1)(n+2)} + \dots$		
⊖ Converges.	O Diverges.	Series' Sum:	
Solution: First, by	partial fraction decomposition of the general	term, we have	
	$a_n = \frac{1}{(1 + 1)(1 + 1)} = \frac{1}{(1 + 1)(1 + 1)} = \frac{1}{(1 + 1)(1 + 1)}$		
	(n+1)(n+2) $n+1$ $n+2s_n = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$		
	$= \begin{pmatrix} 1 & y \\ - & - \end{pmatrix} + \begin{pmatrix} y & y \\ - & - \end{pmatrix} + \begin{pmatrix} y & y \\ - & - \end{pmatrix} + \cdots$	$+(\frac{1}{4}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{4})$	
	$\begin{pmatrix} 2 & \beta \end{pmatrix} + \begin{pmatrix} \beta & 4 \end{pmatrix} + \begin{pmatrix} 4 & 5 \end{pmatrix} + \begin{pmatrix} 1 & 1 \end{pmatrix}$	(h + 1) (n+1)	
	$=\overline{2}-\overline{n+2}$		
	$\Rightarrow \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{n+2} \right) = \left \frac{1}{2} \right $		
p.72, pr.8			
(b) (10 Points) $\sum_{n=1}^{\infty} \sqrt{n}$			
(b) (10 Points) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$			
O Converges.	O Diverges.	1est Used:	
Solution: Let $a_n =$	$\frac{\sqrt{n}}{n^2+1} > 0$ for each $n \ge 1$. We have		
	$n^{-} + 1$	$n^2 + 1$ $K_{0} n^{3/2}$	
	$n^2 + 1 > n^2 \Rightarrow n^2 + 1 > n^{3/2} n^{3/2} = \sqrt{n^2}$	$\overline{n} \cdot n^{3/2} \Rightarrow \frac{n+1}{\sqrt{n}} > \frac{\chi n n}{\sqrt{n}}$	
	$\Rightarrow \frac{\sqrt{n}}{n^2+1} < \frac{1}{n^{3/2}}$ for each	$n n \ge 1$.	
$\sum_{n=1}^{\infty}$			
Now $\sum_{n=1}^{\infty} \overline{n^{3/2}}$ is a c	convergent <i>p</i> -series with $p = 3/2$. hence by	the Direct Comparison Test the given se	ries converges.
Also use the Limit of	comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$.		
p.82, pr.35	n-1		
(c) (10 Points) $\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$	1)]		
\bigcirc Converges.	Diverges.	Test Used:	
	<i>n</i> !	(n+1)! $(n+1)!$	
Solution: Let $a_n =$	$\overline{(2n+1)!}$. Use the Ratio Test. Then, since a_n	$a_{n+1} = \frac{(2n+1)(n+1)!}{(2n+3)!} = \frac{(2n+3)!}{(2n+3)!}$	
	$\frac{a_{n+1}}{(n+1)!} = \frac{(n+1)!}{(n+1)!} = ($	$\frac{1)n!}{(2n+1)!} = \frac{1}{(2n+1)!}$	
	a_n (2n+3)! n! (2n+3)(2n+) 2 lin a_{n+1} ! 1	(-2)(2n+1)! $p!$ $2(2n+3)$	
	$\Rightarrow \rho = \lim_{n \to \infty} \frac{1}{a_n} = \lim_{n \to \infty} \frac{1}{2(2n+3)} = 0$)	
Since $\rho = 0 < 1$, it	follows by Ratio Test, the series converges.		
p.82, pr.35			