\bigcirc

 \bigcirc

 $\frac{1}{3}$ x

2

1

2. <u>16 Points</u> Find the *area of the surface* generated by revolving the curve about the *x*-axis. $y = \sqrt{2x+1}, 0 \le x \le 3$.

Solution:
$$\frac{dy}{dx} = \frac{d}{dx}(\sqrt{2x+1}) = \frac{1}{\sqrt{2x+1}} \Rightarrow \sqrt{1+\left(\frac{dy}{dx}\right)^2} = \sqrt{1+\left(\frac{1}{\sqrt{2x+1}}\right)^2} = \sqrt{\frac{2x+2}{2x+1}}$$

Now $y\sqrt{1+\left(\frac{dy}{dx}\right)^2} = \sqrt{2x+1}\sqrt{\frac{2x+2}{2x+1}} = \sqrt{2x+2}$. Hence the area of the surface of revolution is
 $S = 2\pi \int_0^3 y\sqrt{1+\left(\frac{dy}{dx}\right)^2} dx = 2\sqrt{2}\pi \int_0^3 \sqrt{x+1} dx$
 $= 2\sqrt{2}\pi \left[\frac{2}{3}(x+1)^{3/2}\right]_0^3 = 2\sqrt{2}\pi \frac{2}{3}(8-1) = \frac{28\pi\sqrt{2}}{3}$

3. 17 Points Use only optimization to find the point on the line $\frac{x}{a} + \frac{y}{b} = 1$ that is *closest* to the origin.

- **Solution:** Suppose P(x,y) is the point on this line that is closest to the origin. Let $d = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$ and $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow y = -\frac{b}{a}x + b$. We can minimize d by minimizing $D = (\sqrt{x^2 + y^2})^2 = x^2 + (-\frac{b}{a}x + b)^2 \Rightarrow D' = 2x + 2(-\frac{b}{a}x + b)(-\frac{b}{a}) = 2x + \frac{2b^2}{a^2}x - \frac{2b^2}{a}$. Hence $D' = 0 \Rightarrow 2(x + \frac{b^2}{a^2}x - \frac{b^2}{a}) = 0 \Rightarrow x = \frac{ab^2}{a^2 + b^2}$ is the critical point $\Rightarrow y = -\frac{b}{a}(\frac{ab^2}{a^2 + b^2}) + b = \frac{a^2b}{a^2 + b^2}$. Thus $D'' = 2 + \frac{2b^2}{a^2} \Rightarrow D''(\frac{ab^2}{a^2 + b^2}) = 2 + \frac{2b^2}{a^2} > 0$ \Rightarrow the critical point is local minimum by the Second Derivative Test, $\Rightarrow (\frac{ab^2}{a^2 + b^2}, \frac{a^2b}{a^2 + b^2})$ is the point on the line $\frac{x}{a} + \frac{y}{b} = 1$ that is closest to the origin.
- 4. Given the curve $y = x^{2/3}(x-5)$, $y' = \frac{5}{3}x^{-1/3}(x-2)$, $y'' = \frac{10}{9}x^{-4/3}(x+1)$.
 - (a) 8 Points Find the open intervals where the graph is *increasing* and *decreasing*. Find the *local maximum* and *minimum* values.

Solution: Notice that y' > 0 if and only if x < 0 or x > 2. Thus the curve is rising on $(-\infty, 0)$ and $(2, \infty)$, and falling on (0, 2). There is a local minimum at x = 2 and a local maximum at x = 0.

(b) 8 Points Determine where the graph is *concave up* and *concave down*, and find any *inflection points*.

Solution: Notice that y'' > 0 if and only if -1 < x < 0 or x > 0. Therefore the curve is concave up on (-1,0) and $(0,\infty)$, and concave down on $(-\infty, -1)$. The point of inflection is (-1, -4) and a cusp at (0,0). The graph is as follows.

