Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator Page 1 of 4

January 23, 2019 [12:30 pm-2:00 pm]	Math 113/ Re-take Exam -(-α-)
-------------------------------------	-------------------------------

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No				
Professor's Name / Öğretim Üyesi	Your Department / Bölüm			
 Calculators, cell phones off and away!. In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get 		Problem	Points	Score
little or no credit for it, even if your answer is correct. S work in evaluating any limits, derivatives.		1	30	
 Place a box around your answer to each question. Use a BLUE ball-point pen to fill the cover sheet. Please 	make sure	2	12	
that your exam is complete.Time limit is 90 min.		3	33	
• Time mint is 90 min. o not write in the table to the right.		4	25	
		Total:	100	

Cep telefonunuzu gözetmene teslim ediniz / Deposit vour cell phones to invigilator

Expression for the end of the solid generated by revolving the region bounded by
$$\frac{1}{2}$$
 (12 Points) Find the volume of the solid generated by revolving the region bounded by $\frac{1}{2}$ (12 Points) Find the integral $\int_{1}^{2} \frac{8 \, dx}{x^2 - 2x + 2}$.
Solution:

$$\int_{1}^{2} \frac{8 \, dx}{x^2 - 2x + 2} = 8 \int_{1}^{2} \frac{dx}{1 + (x^2 - 2x + 1)} = 8 \int_{1}^{2} \frac{dx}{1 + (x - 1)^2}$$

$$= 8 \left[\tan^{-1}(x - 1) \right]_{1}^{2}$$

$$= 8 \left[\tan^{-1}(2 - 1) - \tan^{-1}(1 - 1) \right]_{1}^{2} = 8 \left(\frac{\pi}{4} - 0 \right) = \left[2\pi \right]$$
(c) ID Points) Find the derivative $\frac{dy}{dx}$ if $y = \tan^{-1}\sqrt{x^2 - 1} + \csc^{-1}x$ where $x > 1$.
Solution:

$$y = \tan^{-1}\sqrt{x^2 - 1} + \csc^{-1}x = \tan^{-1}(x^2 - 1)^{1/2} + \csc^{-1}x$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}(x^2 - 1)^{-1/2}2x}{1 + ((x^2 - 1)^{1/2})^2} - \frac{1}{|x|\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1}}{x^2} - \frac{1}{|x|\sqrt{x^2 - 1}} = \frac{1}{x\sqrt{x^2 - 1}} - \frac{1}{|x|\sqrt{x^2 - 1}} = \left[0 \right] \text{ as } x > 1$$

ľ, , , , ,

Solution: If we use the shells, we slice vertically and so we have

$$V = \int_{a}^{b} 2\pi \left(\begin{array}{c} \text{shell} \\ \text{radius} \end{array} \right) \left(\begin{array}{c} \text{shell} \\ \text{height} \end{array} \right) dx$$
$$= \int_{0}^{1} 2\pi x (x^{2} - (-x^{4})) dx$$
$$= 2\pi \int_{0}^{1} (x^{3} + x^{5}) dx = 2\pi \left[\frac{x^{4}}{4} + \frac{x^{6}}{6} \right]_{0}^{1}$$
$$= 2\pi (\frac{1}{4} + \frac{1}{6}) = \boxed{\frac{5\pi}{6}}.$$

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator January 23, 2019 [12:30 pm-2:00 pm] Math 113/ Re-take Exam -(- α -) Page 3 of 4

January 23, 2019 [12:30 pm-2:00 pm] Math 113/ Re-take Exam -(-
$$\alpha$$
-)

$$Page 3 of 4$$
3. (a) II Poims Find $\frac{dy}{dx}$ if $y = \int_{scc.t}^{2} \frac{1}{t^{2} + 1} dt$.
Solution: First let $u = secx$ and so $du = secx tant dx . Now we have

$$\frac{dy}{dx} = \frac{d}{dx} \left(\int_{scc.t}^{1} \frac{dt}{1 + t^{2}}\right) = \frac{d}{dx} \left(\int_{s}^{1} \frac{dt}{1 + t^{2}}\right) = -\frac{d}{dx} \left(\int_{s}^{0} \frac{dt}{1 + t^{2}}\right) = -\frac{d}{du} \left(\int_{s}^{0} \frac{dt}{1 + t^{2}}\right) \frac{du}{dx}$$

$$= -\frac{1}{1 + u^{2}} \sec x \tan x$$

$$= -\frac{1}{1 + scc^{2}x} \sec x \tan x = \left[\frac{-scc.t \tan x}{1 + scc^{2}x}\right]$$

$$g^{(0)}$$
(b) 10 Points Evaluate the integral $\int_{scc.t}^{\pi/2} \frac{5 \sin x \cos x}{\sqrt{4 + 5 \cos^{2}x}} dx$.
Solution: Let $u = 4 + 5 \cos^{2} x$ and so $du = -100 \exp x \sin x dx$. When $x = 0$, we have $u = 9$ and when $x = \pi/2$, we have $u = 4$. Therefore:

$$\int_{0}^{\pi/2} \frac{\sqrt{4} + 5 \cos^{2}x}{\sqrt{4 + 5 \cos^{2}x}} dx = -\frac{5}{10} \int_{0}^{\pi/2} \frac{1}{\sqrt{4} + 5 \cos^{2}x} (-10) \sin x \cos x dx$$

$$= -\frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{u}} du$$

$$= \int_{0}^{1} \frac{1}{2\sqrt{u}} du = \left[\int_{0}^{0} \frac{1}{\sqrt{u}} du = \int_{0}^{1} \frac{1}{\sqrt{u}}$$$

$$\frac{y^2}{4} = \frac{y+2}{4} \Rightarrow y^2 - y - 2 = 0 \Rightarrow (y-2)(y+1) = 0 \Rightarrow y = -1 \text{ or } y = 2 \Rightarrow c = -1, d = 2;$$

$$f(y) = \frac{y+2}{4} \text{ and } g(y) = \frac{y^2}{4} \text{ and so}$$

$$AREA = \int_c^d [f(y) - g(y)] \, dy = \int_{-1}^2 \left(\frac{y+2}{4} - \frac{y^2}{4}\right) \, dy = \frac{1}{4} \int_{-1}^2 (y+2-y^2) \, dy = \frac{1}{4} \left[\frac{y^2}{2} + 2y - \frac{y^3}{3}\right]_{-1}^2$$

$$= \frac{1}{4} \left[\left(\frac{4}{2} + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right)\right] = \begin{bmatrix}9\\8\end{bmatrix}$$

p.321, pr.21

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorJanuary 23, 2019 [12:30 pm-2:00 pm]Math 113/ Re-take Exam -(-α-)Page 4 of 4

4. (a) 11 Points For what value(s) of k will the curve $y = x^3 + kx^2 + 3x - 4$ have *exactly one* horizontal tangent?

Solution: $f'(x) = 3x^2 + 2kx + 3 = 0$ (slope must be zero, for horizontal tangent)

To determine the types and number of roots of a quadratic equation $ax^2 + bx + c = 0$, we must examine the discriminant $\Delta = b^2 - 4ac$:

• If $b^2 - 4ac > 0$ then there are two real (unique) roots

- If $b^2 4ac = 0$ then there is one (double) real root
- If $b^2 4ac < 0$ then there are two imaginary roots

For single tangent, $b^2 - 4ac = 0$, So, $4k^2 - 36 = 0$ $k^2 - 9 = 0$ $\Rightarrow k = \pm 3$.

p.257, pr.4

(b) 14 Points Sketch the graph of $y = \frac{2x}{x+5} = 2 - \frac{10}{x+5}$. Find the asymtotes. Find all local maximum/minimum points and inflection points, if any. You may assume $y' = \frac{10}{(x+5)^2}$ and $y'' = -\frac{20}{(x+5)^3}$.

Solution: First $\lim_{x \to -5^+} \frac{2x}{x+5} = -\infty$, $\lim_{x \to -5^-} \frac{2x}{x+5} = +\infty$. So the line x = -5 is a vertical asymptote. Since $\lim_{x \to \pm\infty} \frac{2x}{x+5} = 2$, the line y = 2 is a horizontal asymptote.

Since $y' = \frac{10}{(x_5)^2} > 0$ for all $x \neq -5$, the graph is increasing on $(-\infty, -5) \cup (-5, \infty)$. Therefore no local maxima or minima occurs.

Moreover, we have $y'' = \frac{20}{(x+5)^3}$ and so

 $y'' \begin{cases} >0, & \text{on } (-\infty, -5) & \text{y is concave up} \\ <0, & \text{on } (-5, \infty) & \text{y is concave down} \end{cases}$

Hence *f* is concave up on $(-\infty, -5)$ and concave down on $(-5, \infty)$. Also graph has *no point of inflection* as there is no tangent line at x = 3.

